Redox regulation of pyruvate kinase M2 by cysteine oxidation and S-nitrosation.

Biochem J

Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, U.K.

Published: October 2018

We show here that the M2 isoform of human pyruvate kinase (M2PYK) is susceptible to nitrosation and oxidation, and that these modifications regulate enzyme activity by preventing the formation of the active tetrameric form. The biotin-switch assay carried out on M1 and M2 isoforms showed that M2PYK is sensitive to nitrosation and that Cys326 is highly susceptible to redox modification. Structural and enzymatic studies have been carried out on point mutants for three cysteine residues (Cys424, Cys358, and Cys326) to characterise their potential roles in redox regulation. Nine cysteines are conserved between M2PYK and M1PYK. Cys424 is the only cysteine unique to M2PYK. C424S, C424A, and C424L showed a moderate effect on enzyme activity with 80, 100, and 140% activity, respectively, compared with M2PYK. C358 had been previously identified from studies to be the favoured target for oxidation. Our characterised mutant showed that this mutation stabilises tetrameric M2PYK, suggesting that the resistance to oxidation for the Cys358Ser mutation is due to stabilisation of the tetrameric form of the enzyme. In contrast, the Cys326Ser mutant exists predominantly in monomeric form. A biotin-switch assay using this mutant also showed a significant reduction in biotinylation of M2PYK, confirming that this is a major target for nitrosation and probably oxidation. Our results show that the sensitivity of M2PYK to oxidation and nitrosation is regulated by its monomer-tetramer equilibrium. In the monomer state, residues (in particular C326) are exposed to oxidative modifications that prevent reformation of the active tetrameric form.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6208296PMC
http://dx.doi.org/10.1042/BCJ20180556DOI Listing

Publication Analysis

Top Keywords

tetrameric form
12
redox regulation
8
pyruvate kinase
8
m2pyk
8
nitrosation oxidation
8
enzyme activity
8
active tetrameric
8
form biotin-switch
8
biotin-switch assay
8
oxidation
6

Similar Publications

1,2-Phenylene tetraurea macrocycles recently attracted attention as self-assembled channel-making compounds with high selectivity to chlorides. Here, we report on the introduction of aliphatic chains in the periphery of the 1,2-phenylene tetraurea macrocycle, which led to deterioration in the ability of the macrocycle to form channels and to a reversal of anion binding preferences in favour of dihydrogen phosphate. In addition, we have developed a new method of synthesis of 1,2-phenylene tetraurea macrocycle, using a direct click of two diamino ureido derivatives by triphosgene in the presence of chloride template.

View Article and Find Full Text PDF

The detection of molecular patterns associated with invading pathogens is a hallmark of innate immune systems. Prokaryotes deploy sophisticated host defense mechanisms in innate anti-phage immunity. Shedu is a single-component defense system comprising a putative nuclease SduA.

View Article and Find Full Text PDF

PqsE and RhlR, key regulators of the Pseudomonas aeruginosa quorum sensing (QS) system, form a hetero-tetrameric complex essential for controlling the expression of virulence factors such as pyocyanin. The interaction between the PqsE homodimer and the RhlR homodimer bound to C4-HSL, enables RhlR to bind low-affinity promoters, thereby influencing gene regulation. Recent studies suggest that RhlR transcriptional activity is modulated by temperature, exhibiting higher activity at environmental temperatures (25 °C) compared to mammalian body temperature (37 °C).

View Article and Find Full Text PDF

Identification of assembly mode of non-canonical BAF (ncBAF) chromatin remodeling complex core module.

Biochem Biophys Res Commun

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!