A newly discovered neural stem cell population is generated by the optic lobe neuroepithelium during embryogenesis in .

Development

The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK

Published: September 2018

Neural stem cells must balance symmetric and asymmetric cell divisions to generate a functioning brain of the correct size. In both the developing visual system and mammalian cerebral cortex, symmetrically dividing neuroepithelial cells transform gradually into asymmetrically dividing progenitors that generate neurons and glia. As a result, it has been widely accepted that stem cells in these tissues switch from a symmetric, expansive phase of cell divisions to a later neurogenic phase of cell divisions. In the optic lobe, this switch is thought to occur during larval development. However, we have found that neuroepithelial cells start to produce neuroblasts during embryonic development, demonstrating a much earlier role for neuroblasts in the developing visual system. These neuroblasts undergo neurogenic divisions, enter quiescence and are retained post-embryonically, together with neuroepithelial cells. Later in development, neuroepithelial cells undergo further cell divisions before transforming into larval neuroblasts. Our results demonstrate that the optic lobe neuroepithelium gives rise to neurons and glia over 60 h earlier than was thought previously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176933PMC
http://dx.doi.org/10.1242/dev.166207DOI Listing

Publication Analysis

Top Keywords

cell divisions
16
neuroepithelial cells
16
optic lobe
12
neural stem
8
lobe neuroepithelium
8
stem cells
8
developing visual
8
visual system
8
neurons glia
8
phase cell
8

Similar Publications

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!