Internal parasites of horses comprise an intractable problem conferring disease, production and performance losses. Parasitism can rarely be controlled in grazing horses by management alone and anthelmintic drugs have formed the basis of therapy and prophylaxis for the last sixty years. The pharmacology of the anthelmintic drugs available dictate their spectrum of activity and degree of efficacy, their optimal routes of administration and characteristics which prevent some routes of administration, their safety tolerance and potential toxicities and as a consequence of their persistence in the body at effective concentrations their use in epidemiological control programmes. Their use has also resulted in the selection of parasites with genetically controlled characteristics which reduce their susceptibility to treatment, characteristics which are often common to whole chemical classes of anthelmintics. Pharmacological properties also confer compatibility in terms of safety and persistence with other anthelmintic drugs and thus the potential of combinations to treat parasites from different phylogenetic groups such as nematodes, cestodes and trematodes and also the potential by agency of their different molecular mechanisms of action to delay the selection of resistant genes. The major groups of anthelmintics now available, the benzimidazoles (BZD), macrocyclic lactones (MLs) and tetrahydropyrimidines are all highly effective against their targeted parasites (primarily nematodes for BZD's and ML's and cestodes for tetrahydropyrimidines) easily administered orally to horses and are well tolerated with wide margins of safety. Nevertheless, some parasitic stages are inherently less susceptible such as hypobiotic stages of the small strongyles (cyathostomins) and for some such as the adult stages of cyathostomins resistance has developed. Furthermore, for some less common parasites such as the liver fluke unlicensed drugs such as the salicylanilide, closantel have been used. A deep understanding of the pharmacology of anthelmintic drugs is essential to their optimal use in equine species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetpar.2018.08.002 | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.
View Article and Find Full Text PDFActa Parasitol
January 2025
Faculty of Veterinary Medicine, Department of Parasitology, Kirikkale University, Kirikkale, 71450, Türkiye.
Purpose: In the present study, the effects of leaf and rhizome extracts of Arum rupicola Boiss rupicola were searched on the infective stage Toxocara canis larvae (L3) in the experimentally infected mice.
Methods: Four-six week-old male BALB/c mice were divided into eight groups (G1-8, each group consisted of 7 mice), and they were infected orally with 500 T. canis eggs with L3.
AAPS PharmSciTech
January 2025
University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, Maryland, 21201, USA.
Dosage forms containing Ivermectin (IVER) and Praziquantel (PRAZ) are important combination drug products in animal health. Understanding the relationship between products with differing in vitro release characteristics and bioequivalence could facilitate generics. The goal of this study was to create granulations for each active ingredient, with similar release mechanisms, but substantially different in vitro release rates, and then compressing these granulations into tablets with differing release rates.
View Article and Find Full Text PDFVet Parasitol
January 2025
Laboratory of Veterinary Clinical Parasitology, Federal University of Paraná, UFPR, R: dos Funcionários, 1540, Curitiba, PR CEP: 81530-000, Brazil. Electronic address:
Haemonchus contortus is a gastrointestinal parasite that affects ruminants (cattle, sheep, etc.), having a significant welfare impact worldwide. The rise of anthelmintic resistance poses a growing challenge to adequate control, compromising the success of treatments.
View Article and Find Full Text PDFVet Parasitol
January 2025
College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China. Electronic address:
Monogenean parasites are harmful pathogens in aquaculture systems. Current treatment strategies for monogenean infections are unsatisfactory, making the discovery of new drugs urgent. Thymoquinone (TQ), a natural monoterpene isolated from Nigella sativa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!