Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We compare different approaches towards an effective description of multiscale velocity field correlations in turbulence. Predictions made by the operator-product expansion, the so-called fusion rules, are placed in juxtaposition to an approach that interprets the turbulent energy cascade in terms of a Markov process of velocity increments in scale. We explicitly show that the fusion rules are a direct consequence of the Markov property provided that the structure functions exhibit scaling in the inertial range. Furthermore, the limit case of joint velocity gradient and velocity increment statistics is discussed and put into the context of the notion of dissipative anomaly. We generalize a prediction made by the multifractal model derived by Benzi et al. [R. Benzi et al., Phys. Rev. Lett. 80, 3244 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.3244] to correlations among inertial range velocity increment and velocity gradients of any order. We show that for the case of squared velocity gradients such a relation can be derived from first principles in the case of Burgers equations. Our results are benchmarked by intensive direct numerical simulations of Burgers turbulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.98.023104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!