Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.09.059 | DOI Listing |
BMC Pediatr
January 2025
Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
Purpose: To elucidate the global epidemiology of Ophthalmia Neonatorum (ON), as well as its causative organisms and their antibiotic susceptibility patterns.
Methods: A systematic review of studies reporting the epidemiology of ON was performed using four electronic databases: PubMed, Scopus, Web of Science, and Medline. Data were extracted and study-specific estimates were combined using meta-analysis to obtain pooled proportions.
BMC Infect Dis
January 2025
Department of Public Health Medicine, Faculty of Medicine, National University of Malaysia, Federal Territory of Kuala Lumpur, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Malaysia.
Introduction: Antimicrobial resistance is a global issue, with the World Health Organization identifying it as one of the greatest threats to public health, with an estimated 4.95 million deaths linked to bacterial AMR in 2019. Our study aimed to determine the prevalence of mortality among multidrug-resistant organism (MDRO)-infected patients in state hospitals and major specialist hospitals and to identify risk factors that could be associated with mortality outcomes.
View Article and Find Full Text PDFNat Commun
January 2025
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Kgs., Lyngby, Denmark.
The gut microbiome significantly impacts human health, yet cultivation challenges hinder its exploration. Here, we combine deep whole-metagenome sequencing with culturomics to selectively enrich for taxa and functional capabilities of interest. Using a modified commercial base medium, 50 growth modifications were evaluated, spanning antibiotics, physico-chemical conditions, and bioactive compounds.
View Article and Find Full Text PDFVet Ophthalmol
January 2025
Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
Objective: To investigate the impact of dexamethasone on the antibiotic susceptibility of common ocular pathogens in dogs and identify safe antibiotic-steroid combinations for veterinary ophthalmology.
Methods: This study utilized 30 bacterial isolates of Staphylococcus pseudintermedius, Streptococcus canis, and Pseudomonas aeruginosa, collected from canine patients with suspected bacterial keratitis. The isolates were tested against 17 antibiotics in the presence of dexamethasone concentrations ranging from 0 to 2 mg/mL.
J Microbiol Biotechnol
November 2024
Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.
is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!