Nitrogen runoff from fertiliser intensive land uses has become an issue worldwide, contributing to algal blooms, hypoxic waters and aquatic biodiversity losses. This study assessed potential nutrient pollution from blueberry farms in subtropical Australia and examines whether nutrient loads were driven by groundwater discharge and/or surface water runoff. Streams downstream of eight blueberry farms were compared to eight nearby control sites without any blueberry activity. In the 90 day sample period, there were three rain events >90 mm day that produced runoff sufficient to create flooding. Overall, the results revealed a clear link between blueberry farming and nitrogen runoff in headwater streams. While NO (nitrate + nitrite) was the dominant nitrogen species downstream of blueberry farms, dissolved organic nitrogen (DON) was the dominant species in control sites. The concentrations and loads of NO were one order of magnitude lower in the eight non-blueberry (6.3 ± 2.0 μmol L; 1.6 ± 1.2 kg N-NO ha yr) than the eight blueberry (56.9 ± 14.2 μmol L; 21.8 ± 8.0 kg N-NO ha yr) sites. NO concentrations and loads were highest following rain events. Radon (Rn, a natural groundwater tracer) observations and low nitrogen concentration in groundwater samples further suggest that surface runoff dominates the delivery of nitrogen to the creeks investigated. NO concentrations and loads in creeks correlated with blueberry farm density. At >15% of blueberry land use in a catchment, there was a detectable influence in NO concentrations and loads in the headwater streams. Assuming that our load estimates can be up-scaled to annual nitrogen creek exports, and that local farmers use the recommended amount of fertiliser (121 kg N ha yr), between 18 and 25% of the used fertiliser was lost to the creeks. This implies that there are opportunities for decreasing the use of fertilisers in this catchment and managing any nitrogen that escapes to the creeks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.08.074 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
Background: Acute Lymphoblastic Leukemia (ALL) is the most common type of leukemia among children. There are several types of drugs that are common in treating and controlling leukemia, including 6-M. Moreover, the anti-cancer effects of the Thiosemicarbazone-Ni complex were surveyed as well as 6-MP.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.
Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.
J Liposome Res
January 2025
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China.
This study aimed to design a novel liposome containing GA modified phosphatidylcholine lipid (GA-PC Lip) and determine its susceptibility to tumor over-expressed secretory phospholipase A (sPLA) and its anti-cancer effect compared to conventional liposomes (Convention Lip). The liposomes were characterized for size, drug loading, encapsulation efficiency, and stability. A 6-CF release assay was conducted to assess the sensitivity of the liposomes to the tumor-overexpressed secretory phospholipase A (sPLA).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!