A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rice SDSFL1 plays a critical role in the regulation of plant structure through the control of different phytohormones and altered cell structure. | LitMetric

Semi-dwarfism is one of the most important agronomic traits for many cereal crops. In the present study, a mutant with semi-dwarf and short flag leaf 1, sdsfl1, was identified and characterized. The sdsfl1 mutant demonstrated some distinguished structural alterations, including shorter plant height and flag leaf length, increased tiller numbers and flag leaf width, and decreased panicle length compared with those of wild type (WT). Genetic analysis suggested that the mutant traits were completely controlled by a single recessive gene. The SDSFL1 gene was mapped to the long arm of chromosome 3 within a region of 44.6 kb between InDel markers A3P8.3 and A3P8.4. The DNA sequence analysis revealed that there was only a T to C substitution in the coding region of LOC_Os03g63970, resulting in the substitution of Tryptophan (Try) to Arginine (Arg) and encoding a GA 20 oxidase 1 protein of 372 amino acid residues. Photosynthesis analysis showed that the photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO concentration (Ci) were significantly increased in sdsfl1. Chlorophyll a (Chl a), total Chl, and carotenoid contents were significantly increased in sdsfl1 compared with those in WT. sdsfl1 carried a reduced level of GA but reacted to exogenously applied gibberellins (GA). Moreover, the levels of abscisic acid (ABA), indole 3-acetic acid (IAA), and salicylic acid (SA) were notably improved in sdsfl1, whereas there was no noteworthy change in jasmonic acid (JA). The results thus offer a visible foundation for the molecular and physiological analysis of the SDSFL1 gene, which might participate in various functional pathways for controlling plant height and leaf length in rice breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2018.09.005DOI Listing

Publication Analysis

Top Keywords

flag leaf
12
sdsfl1
8
plant height
8
leaf length
8
sdsfl1 gene
8
increased sdsfl1
8
acid
5
rice sdsfl1
4
sdsfl1 plays
4
plays critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!