Benzodiazepines make up a class of psychoactive drugs that act as allosteric co-activators of the inhibitory GABA receptor. These drugs are useful for the treatment of several psychiatric disorders but also hold considerable abuse liability. Despite the common use and misuse of benzodiazepines, the mechanisms through which these drugs exert their reinforcing effects remain incompletely understood. Transient phasic increases in dopamine levels are believed to play an important role in defining the reinforcing properties of drugs of abuse, and we recently demonstrated that systemic administration of benzodiazepines increased the frequency of these events but concomitantly reduced their amplitude. This observation provides insight into the pharmacological effects of benzodiazepines on dopamine signaling, but the processes through which benzodiazepines drive changes in phasic dopamine signals remain unclear. In these studies, we investigated the mechanisms through which benzodiazepines may reduce the phasic dopamine transient amplitude. We tested the effect of the benzodiazepine diazepam and the GABA agonist muscimol on evoked dopamine release from nucleus accumbens brain slices using fast scan cyclic voltammetry. We found that both diazepam and muscimol reduce dopamine release and that reductions in dopamine release following GABA receptor activation can be blocked by co-application of a GABA receptor antagonist. These results suggest that activation of GABA receptors in the nucleus accumbens decreases dopamine release by disinhibition of local GABA signaling and subsequent activation of GABA receptors. Overall, this work provides a putative mechanism through which benzodiazepines reduce the amplitude of phasic dopamine release in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.8b00268 | DOI Listing |
Int Immunopharmacol
January 2025
Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. Electronic address:
Background: Circulating levels of the female hormone estrogen has been associated with the development of Parkinson's disease (PD), although the underlying mechanism remains unclear. Immune homeostasis mediated by peripheral regulatory T cells (Treg) is a crucial factor in PD. The aim of this study was to explore the effects of estrogen deficiency on neuroinflammation and neurodegeneration in a rodent model of PD, with particular reference to Treg.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla str. 6., 6720 Szeged, Hungary.
Ghrelin and growth hormone-releasing peptide 6 (GHRP-6) are peptides which can stimulate GH release, acting through the same receptor. Ghrelin and its receptor have been involved in reward sensation and addiction induced by natural and artificial drugs, including nicotine. The present study aimed to investigate the impacts of ghrelin and GHRP-6 on the horizontal and vertical activity in rats exposed to chronic nicotine treatment followed by acute nicotine withdrawal.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China. Electronic address:
Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.
View Article and Find Full Text PDFScience
January 2025
Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!