AROGENATE DEHAYDRATASE2 (ADT2) is a member of the Arabidopsis thaliana ADT family. All members of this family act as arogenate dehydratases in phenylalanine biosynthesis, decarboxylating/dehydrating arogenate to phenylalanine. ADT2 is detected in stromules, and as a ring around the equatorial plane of dividing chloroplasts, indicating it has a second, non-enzymatic function in chloroplast division. Here, we provide further evidence for this alternative role of ADT2. First, we demonstrate that ADT2 and FtsZ co-localize around the equatorial plane at the same time. Second, FtsZ expression in an adt2 mutant was analyzed, as well as ADT2 expression in three Arabidopsis chloroplast division mutants, ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), ARC5 and ARC6. In arc3 and arc6 mutants, ADT2 is misexpressed and resembles the expression of FtsZ in the same mutants. However, in the arc5 mutant, ADT2 ring positioning is observed at constriction points indicating proper relative timing. ADT2 expression in the arc mutants shows that the role of ADT2 in chloroplast division occurs prior to ARC5, but is dependent on ARC3 and ARC6. Abbreviations used: ADT: arogenate dehydratase, ARC: accumulation and replication of chloroplasts, CFP: cyan fluorescent protein, dpi: days post infiltration, FtsZ: filamentous temperature sensitive Z, PD: plastid division, Phe: phenylalanine, YFP: yellow fluorescent protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204816 | PMC |
http://dx.doi.org/10.1080/15592324.2018.1517075 | DOI Listing |
Sci Rep
January 2025
Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Budapest, Hungary.
Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.
View Article and Find Full Text PDFMol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA.
We present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.
Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!