Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnesium ions (Mg) are crucial for various biological processes. A bacterial Mg channel, MgtE, tightly regulates the intracellular Mg concentration. Previous X-ray crystal structures showed that MgtE forms a dimeric structure composed of a total of 10 transmembrane α helices forming a central pore, and intracellular soluble domains constituting a Mg sensor. The ion selectivity for Mg over Ca resides at a central cavity in the transmembrane pore of MgtE, involving a conserved aspartate residue (Asp432) from each monomer. Here, we applied ion-exchange-induced difference FTIR spectroscopy to analyze the interactions between MgtE and divalent cations, Mg and Ca. Using site-directed mutagenesis, vibrational bands at 1421 (Mg), 1407 (Mg), ∼1440 (Ca), and 1390 (Ca) cm were assigned to symmetric carboxylate stretching modes of Asp432, involved in the ion coordination. Conservative modifications of the central cavity by Asp432Glu or Ala417Leu mutations resulted in the disappearance of the Mg-sensitive carboxylate bands, suggesting a highly optimized geometry for accommodating a Mg ion. The dependency of the vibrational changes on Mg and Ca concentrations revealed the presence of a two different classes of binding sites: a high affinity site for Mg ( K ≈ 0.3 mM) with low Ca affinity ( K ≈ 80 mM), and a medium affinity site for Mg ( K ≈ 2 mM) and Ca ( K ≈ 6 mM), tentatively assigned to the central cavity and the sensor domain, respectively. With the aid of molecular dynamics simulation and normal-mode analysis by quantum chemistry, we confirm that changes in carboxylate bands of the high affinity binding site originate from Asp432 in the central cavity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b07967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!