The blocker of two-pore channels trans-NED 19 and hydrogen peroxide were found to inhibit histamine-induced relaxation of rat-aorta. The degree of inhibition depended on histamine concentration. The relaxation in response to I μM histamine of rat aorta preconstricted with 30 mM KCI, serotonin, or endothelin- 1, was completely abolished by 30 μM trans-NED 19. On the other hand, trans-NED 19 decreased the relaxation of the aorta in the presence of 10 μM histamine only by 2.1-fold to 2.4-fold, and there was almost no inhibition by trans-NED 19 of the relaxationinduced by 100 ptM histamine.) Relaxation of precontracted with serotonin aorta in response to 10 and 100 μM histamine was reduced by hydrogen peroxide (200 M) by 10- and 2.5-fold, respectively. Suppression of aorta relaxation by trans-NED 19 and H202 correlated with their inhibitory effect on the histamine-induced increase in the cytoplasmic free calcium concentration in human umbilical vein endothelial cells. With the use of a fluorescent probe LysoTracker, the cis-NED19 binding sites were demonstrated to be localized in endolysosomes of the endothelial cells. These data indicate that two-pore calcium channels participate in the histamine-induced endothelium-dependent relaxation of rat aorta. Furthermore, their functional role is exhibited much more clearly at low histamine concentrations. We suggest that hydrogen peroxide evokes depletion of intracellular calcium depots thereby suppressing the response to histamine.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hydrogen peroxide
16
rat aorta
12
endothelial cells
12
μm histamine
12
histamine-induced relaxation
8
relaxation rat
8
relaxation
7
histamine
7
aorta
6
trans-ned
5

Similar Publications

Background And Objectives: Gingivitis and periodontitis are common periodontal diseases that can significantly harm overall oral health, affecting the teeth and their supporting tissues, along with the surrounding anatomical structures, and if left untreated, leading to the total destruction of the alveolar bone and the connective tissues, tooth loss, and other more serious systemic health issues. Numerous studies have shown that propolis can help reduce gum inflammation, inhibit the growth of pathogenic bacteria, and promote tissue regeneration, but with varying degrees of success reported. For this reason, this comprehensive systematic review aims at finding out the truth concerning the efficacy of propolis mouthwashes in treating gingivitis and periodontitis, as its main objective.

View Article and Find Full Text PDF

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Objective: to evaluate the efficacy and chromatic stability after 4weeks, in all three thirds of the central incisor of two whitening treatments: in-office 37.5% hydrogen peroxide (HP) treatment alone, and 37.5% in-office HP followed by use of 6% HP whitening strips (WS).

View Article and Find Full Text PDF

Near-infrared-triggered release of self-accelerating cascade nanoreactor delivered by macrophages for synergistic tumor photothermal therapy/starvation therapy/chemodynamic therapy.

J Colloid Interface Sci

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.

Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!