Individual and combined toxicity of T-2 toxin and deoxynivalenol on human C-28/I2 and rat primary chondrocytes.

J Appl Toxicol

Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Published: February 2019

AI Article Synopsis

  • Deoxynivalenol (DON) and T-2 toxin are common mycotoxins found in food and feed, and they pose risks for Kashin-Beck disease, impacting bone health.
  • This study aimed to assess the individual and combined toxic effects of these mycotoxins on human and rat chondrocytes using various concentration ratios.
  • The findings revealed that T-2 toxin is significantly more toxic than DON, and their combined effects can be synergistic or antagonistic depending on the concentration and type of chondrocyte.

Article Abstract

Deoxynivalenol (DON) and T-2 toxin are prevalent mycotoxin contaminants in the food and feed stuffs worldwide, with non-negligible co-contamination and co-exposure conditions. Meanwhile, they are considerable risk factors for Kashin-Beck disease, a chronic endemic osteochondropathy. The aim of this study was to investigate the individual and combined cytotoxicity of DON and T-2 toxin on proliferating human C-28/I2 and newborn rat primary costal chondrocytes by MTT assay. Four molar concentration combination ratios of DON and T-2 toxin were used, 1:1 for R1 mixture, 10:1 for R10, 100:1 for R100 and 1000:1 for R1000. The toxicological interactions were quantified by the MixLow method. DON, T-2 toxin, and their mixtures all showed a clear dose-dependent toxicity for chondrocytes. The cytotoxicity of T-2 toxin was 285-fold higher than DON was in human chondrocytes, and 22-fold higher in the rat chondrocytes. The combination of DON and T-2 toxin was significantly synergistic at middle and high level concentrations of R10 mixtures in rat chondrocytes, but significantly antagonistic at the low concentrations of R100 mixtures in both cells and at the middle concentrations of R1000 mixtures in rat chondrocytes. These results indicated that the combined toxicity was influenced by the cell sensitivity for toxins, the difference between the combination ratio and equitoxic ratio, the concentrations and other factors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3725DOI Listing

Publication Analysis

Top Keywords

t-2 toxin
28
don t-2
20
rat chondrocytes
12
individual combined
8
combined toxicity
8
human c-28/i2
8
rat primary
8
mixtures rat
8
t-2
7
toxin
7

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

T-2 toxin triggers immunotoxic effects in goats by inducing ferroptosis and neutrophil extracellular traps.

Toxicol Appl Pharmacol

January 2025

College of Veterinary Medicine, Southwest University, Chongqing 400715, China. Electronic address:

T-2 toxin, a prevalent mycotoxin, represents a notable global public health risk. Neutrophil extracellular traps (NETs) and ferroptosis are involved in a variety of pathophysiological processes and are implicated in goat immunity. However, the impact of T-2 toxin on NETs release, ferroptosis, and their interplay have not been previously documented.

View Article and Find Full Text PDF

Ultrabright aggregation-induced materials for the highly sensitive detection of Ag and T-2 toxin.

Food Chem

January 2025

State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.

View Article and Find Full Text PDF

Downregulation of HSP47 triggers ER stress-mediated apoptosis of hypertrophic chondrocytes contributing to T-2 toxin-induced cartilage damage.

Environ Pollut

January 2025

School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China. Electronic address:

T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats.

View Article and Find Full Text PDF

Co-occurrence of multiple mycotoxins is a growing global food safety concern due to their harmful effects on humans and animals. This study developed an eco-friendly sample preparation method and an innovative multiplex microarray-based lateral flow immunoassay, using a novel portable reader for on-site simultaneous determination of five regulated mycotoxins-aflatoxin B, T-2 toxin, zearalenone, deoxynivalenol, and fumonisin B in rice. The eco-friendly and ultrafast extraction procedure utilizes a bio-based solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!