Identification and validation of the targets of bioactive small molecules identified in cell-based screening is challenging and often meets with failure, calling for the development of new methodology. We demonstrate that a combination of chemical proteomics with in silico target prediction employing the SPiDER method may provide efficient guidance for target candidate selection and prioritization for experimental in-depth evaluation. We identify 5-lipoxygenase (5-LO) as the target of the Wnt pathway inhibitor Lipoxygenin. Lipoxygenin is a non-redox 5-LO inhibitor, modulates the β-catenin-5-LO complex and induces reduction of both β-catenin and 5-LO levels in the nucleus. Lipoxygenin and the structurally unrelated 5-LO inhibitor CJ-13,610 promote cardiac differentiation of human induced pluripotent stem cells and inhibit Hedgehog, TGF-β, BMP, and Activin A signaling, suggesting an unexpected and yet unknown role of 5-LO in these developmental pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2018.05.016DOI Listing

Publication Analysis

Top Keywords

silico target
8
5-lo inhibitor
8
5-lo
5
combined proteomic
4
proteomic silico
4
target
4
target identification
4
identification reveal
4
reveal role
4
role 5-lipoxygenase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!