The understanding of self-organization processes at the micro- and nanoscale is of fundamental interest and is important to meet the great challenges in further miniaturization of electronic devices to the nanoscale. Here, we report self-organized quasi-regular nanodomain structure formation on the nonpolar cut of a ferroelectric lithium niobate single crystal. These structures were formed along the trajectory of grounded scanning probe microscope tip approaching or moving away from the freshly switched region. Detailed analysis of the formed structures revealed internal organization by the length of the needle-like domains, which ranged from uniform to quasi-periodic and even chaotic modes as a function of distance from the switched region. Comprehensive investigations and numerical simulations allowed to attribute explored phenomena to charge injection during the field application and further switching under the action of electric field induced by injected charges near the tip. Self-organization and quasi-periodicity were explained by the effective screening and long-range electrostatic interaction between the individual needle-like domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b10220 | DOI Listing |
J Cell Sci
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA.
Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
A layered lithium-rich manganese-based oxide cathode, containing 3̅ (LiTMO, TM = Mn, Ni, Co) and 2/ (LiMnO) nanodomains, utilizes both transition metals and oxygen redox to yield substantial energy density. However, the inherent heterogeneous nature and distinct nanodomain redox chemistries of layered lithium-rich oxides will inevitably cause pernicious lattice strain and structural displacement, which can hardly be eliminated by conventional doping or coating strategies and result in accelerated performance decay. Herein, we incorporate a strain-inhibiting perovskite phase coherently grown within the layered structure to effectively restrain the displacement and lattice strain during uneven Li-ion extraction.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
High temperature-proton exchange membrane fuel cells (HT-PEMFC) call for ionomers with low humidity dependence and elevated-temperature resistance. Traditional perfluorosulfonic acid (PFSA) ionomers encounter challenges in meeting these stringent requirements. Herein, this study reports a perfluoroimide multi-acid (PFMA) ionomer with dual active centers achieved through the incorporation of sulfonimide and phosphonic acid groups into the side chain.
View Article and Find Full Text PDFSmall
January 2025
Department of Interface Chemistry and Surface Engineering, Max Planck Institute for Sustainable Materials, 40237, Düsseldorf, Germany.
Biosensors based on DNA aptamer receptors are increasingly used in diagnostic applications. To improve the sensitivity and specificity of aptasensors, parameters affecting the stability and binding efficiency of the receptor layer need to be identified and studied. For example, the blocking step, i.
View Article and Find Full Text PDFLiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!