The broad challenges of energy and environment have become a main focus of research efforts to develop more active and selective catalytic systems for key chemical transformations. Surface organometallic chemistry (SOMC) is an established concept, associated with specific tools, for the design, preparation and characterization of well-defined single-site catalysts. The objective is to enter a catalytic cycle through a presumed catalytic intermediate prepared from organometallic or coordination compounds to generate well defined surface organometallic fragments (SOMFs) or surface coordination fragments (SCFs). These notions are the basis of the "catalysis by design" strategy ("structure-activity" relationship) in which a better understanding of the mechanistic aspects of the catalytic process led to the improvement of catalyst performances. In this review the application of SOMC strategy for the design and preparation of catalysts for industrially relevant processes that are crucial to the energy and environment is discussed. In particular, the focus will be on the conversion of energy-related feedstocks, such as methane and higher alkanes that are primary products of the oil and gas industry, and of their product of combustion, CO2, whose efficient capture and conversion is currently indicated as a top priority for the environment. Among the main topics related to energy and environment, catalytic oxidation is also considered as a key subject of this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cs00356d | DOI Listing |
ACS Nano
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.
View Article and Find Full Text PDFSci Rep
December 2024
Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In this study, we present the synthesis of a silver nanocomposite by utilizing a β-cyclodextrin (βCD) polymer anchored onto the surface of magnetic g-CN (referred to as g-CN-FeO/βCD-Ag). The structure and composition of the g-CN-FeO/βCD-Ag nanocomposite were thoroughly characterized using various techniques, including FT-IR, FE-SEM-EDS, TEM, TGA, XRD, ICP, and VSM. This catalytic system exhibited excellent selectivity in reducing nitro groups, even in the presence of other reactive functional groups, resulting in high yields ranging from 85 to 98%.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:
An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.
View Article and Find Full Text PDFLangmuir
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Alkali element doping has significant physical implications for two-dimensional materials, primarily by tuning the electronic structure and carrier concentration. It can enhance interface electronic interactions, providing opportunities for effective charge transfer at metal-organic interfaces. In this work, we investigated the effects of gradually increasing the level of K doping on the lattice structure and electronic properties of an organometallic coordinated Kagome lattice on a Ag(111) surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!