A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of conjugation length on ultrafast electronic tunneling in organic semiconductor thin films. | LitMetric

Influence of conjugation length on ultrafast electronic tunneling in organic semiconductor thin films.

Phys Chem Chem Phys

Department of Chemistry, University of California, Santa Cruz, California 95064, USA.

Published: October 2018

Electron delocalization in conjugated organic molecules is a rate-limiting step in maximizing the charge generation efficiency of next generation photovoltaics and molecular electronics. In particular, ultrafast (<50 fs) delocalization is an important aspect that has been beyond the scope of traditional optical experiments. In this work, we use resonant photoemission spectroscopy to probe electron delocalization timescales as a function of conjugation length by examining an oligothiophene chemical series containing 4-, 5- and 6-mers. We find that above a certain photon energy threshold, the 5-mer, quinquenthiophene, displays the largest ultrafast tunneling rates, roughly three times faster than the 6-mer, sexithiophene. We argue that differences in thin-film molecular packing cannot satisfactorily explain our results, and we speculate that the differences in ultrafast electron dynamics may be a manifestation of the odd/even effect.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp04746dDOI Listing

Publication Analysis

Top Keywords

influence conjugation
4
conjugation length
4
length ultrafast
4
ultrafast electronic
4
electronic tunneling
4
tunneling organic
4
organic semiconductor
4
semiconductor thin
4
thin films
4
films electron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!