Targeting endosomal pH for cancer chemotherapy.

Mol Cell Oncol

Division of Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Canada.

Published: March 2018

Altered pH homeostasis in cancer cells has been linked with essentially all classical hallmarks of cancer, including chemoresistance. We recently identified a conceptually novel mechanism for how dysregulated pH in hypoxic cells causes chemoresistance which is based on the aberrant cellular distribution of the endosomal pH regulator, the sodium/hydrogen exchanger 6 (NHE6).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149877PMC
http://dx.doi.org/10.1080/23723556.2018.1435184DOI Listing

Publication Analysis

Top Keywords

targeting endosomal
4
endosomal cancer
4
cancer chemotherapy
4
chemotherapy altered
4
altered homeostasis
4
homeostasis cancer
4
cancer cells
4
cells linked
4
linked essentially
4
essentially classical
4

Similar Publications

Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.

View Article and Find Full Text PDF

Background: Specialized pro-resolving mediators (SPMs) promote inflammatory resolution and homeostasis and are thought to have specific reprogramming effects on hman microglia. Decreased SPM levels have been correlated with chronic neuroinflammation, late-stage Alzheimer's disease (AD) and neuropathology in humans, yet few studies have explored the cellular signatures of resolution. Amyloid is though to bind one target resolution receptor, ChemR23, leading to internalization.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Genetic, cell biology and autopsied brain tissue studies indicate that deficits in the SORL1-retromer complex play a critical role in the pathogenesis of Alzheimer's disease (AD). SORL1 is an endosomal receptor that interacts with the retromer heterotrimer core complex consisting of VPS26-VPS35-VPS29. Together, SORL1-retromer regulate endosomal recycling of several AD-related cargos such as amyloid precursor protein.

View Article and Find Full Text PDF

Background: The SORL1 gene (SORLA) is strongly associated with risk of developing Alzheimer's disease (AD). SORLA is a regulator of endosomal trafficking in neurons and interacts with retromer, a complex that is a "master conductor" of endosomal trafficking. Because of its size, SORLA is difficult to target therapeutically.

View Article and Find Full Text PDF

Biofluidic biomarkers concord with postmortem molecular studies, suggesting that the endosomal recycling pathway regulated by SORL1's interaction with the retromer protein VPS2b is commonly disrupted in late-onset, 'sporadic', Alzheimer's disease (AD). Here, a program for developing a neuroimaging-based biomarker will be reviewed. The program is anchored by findings in support of the conclusion that, because of its distinct network properties, the trans-entorhinal cortex is heavily dependent on the recycling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!