Sky-blue and blue-emitting, carbazolyl functionalized, bis-tridentate Ir(III) phosphors - with bright emission and short radiative lifetime are successfully synthesized in a one-pot manner. They exhibit very high photostability against UV-vis irradiation in degassed toluene, versus both green and true-blue-emitting reference compounds, i.e., -[Ir(ppy)] and -[Ir(pmp)]. Organic light-emitting diodes (OLEDs) based on exhibit maximum external quantum efficiency (EQE) of 21.6%, EQE of 15.1% at 100 cd m, and with CIE coordinates of (0.17, 0.25). This study provides a conceptual solution to the exceedingly stable and efficient blue phosphor. It is promising that long lifespan blue OLED based on these emitters can be attained with further engineering of devices suitable for commercial application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145234 | PMC |
http://dx.doi.org/10.1002/advs.201800846 | DOI Listing |
Nat Methods
January 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Organic dyes play a crucial role in live-cell imaging because of their advantageous properties, such as photostability and high brightness. Here we introduce a super-photostable and bright organic dye, Phoenix Fluor 555 (PF555), which exhibits an order-of-magnitude longer photobleaching lifetime than conventional organic dyes without the requirement of any anti-photobleaching additives. PF555 is an asymmetric cyanine structure in which, on one side, the indole in the conventional Cyanine-3 is substituted with 3-oxo-quinoline.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China.
The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named and were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:
Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.
View Article and Find Full Text PDFChemistry
January 2025
Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.
Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!