We fabricated a simple microfluidic device for separation of bovine oocytes based on the oocyte quality to improve the conception rate of in vitro fertilization (IVF) by using good quality oocytes. The microfluidic device separates oocytes based on sedimentation rate differences in a sucrose buffer, which is dependent on oocyte quality. The microfluidic device has a 700 µm width, 1 mm height, and 10 mm long separation channel. Oocytes were injected from the upper half of the separation channel, and they flowed while sinking. The outlets of the separation channel were divided into upper and lower chambers. Good quality oocytes settled faster than poor quality oocytes in sucrose buffer; therefore, good quality oocytes were collected from the lower outlet. We performed IVF after the microfluidic separation of oocytes. The developmental rate to blastocysts of oocytes collected from the lower outlet was significantly higher than those collected from the upper outlet (36.0% vs. 14.1%). This result was comparable to that in the BCB staining method performed as a comparison method (BCB+ : 35.7%, BCB-: 15.4%). These findings indicate that our microfluidic device could be applied to oocyte separation and contribute to improvement of in vitro embryo production system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155318 | PMC |
http://dx.doi.org/10.1038/s41598-018-32687-6 | DOI Listing |
Microbiol Spectr
January 2025
Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Unlabelled: Group A (GAS) is a major human pathogen that causes several invasive diseases including necrotizing fasciitis. The host coagulation cascade initiates fibrin clots to sequester bacteria to prevent dissemination into deeper tissues. GAS, especially skin-tropic bacterial strains, utilize specific virulence factors, plasminogen binding M-protein (PAM) and streptokinase (SK), to manipulate hemostasis and activate plasminogen to cause fibrinolysis and fibrin clot escape.
View Article and Find Full Text PDFJ Vis Exp
December 2024
The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;
Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain.
Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications.
View Article and Find Full Text PDFLab Chip
January 2025
School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.
View Article and Find Full Text PDFExtracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!