Besides high efficiency, the stability and reproducibility of perovskite solar cells (PSCs) are also key for their commercialization. Herein, we report a simple perovskite formation method to fabricate perovskite films with thickness over 1 μm in ambient condition on the basis of the fast gas-solid reaction of chlorine-incorporated hydrogen lead triiodide and methylamine gas. The resultant thick and smooth chlorine-incorporated perovskite films exhibit full coverage, improved crystallinity, low surface roughness and low thickness variation. The resultant PSCs achieve an average power conversion efficiency of 19.1 ± 0.4% with good reproducibility. Meanwhile, this method enables an active area efficiency of 15.3% for 5 cm × 5 cm solar modules. The un-encapsulated PSCs exhibit an excellent T lifetime exceeding 1600 h under continuous operation conditions in dry nitrogen environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155243 | PMC |
http://dx.doi.org/10.1038/s41467-018-06317-8 | DOI Listing |
ACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.
Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!