ApoA-I and ABCA1 play important roles in nascent HDL (nHDL) biogenesis, the first step in the pathway of reverse cholesterol transport that protects against cardiovascular disease. On the basis of the crystal structure of a C-terminally truncated form of apoA-I[Δ(185-243)] determined in our laboratory, we hypothesized that opening the N-terminal helix bundle would facilitate lipid binding. To that end, we structurally designed a mutant (L38G/K40G) to destabilize the N-terminal helical bundle at the first hinge region. Conformational characterization of this mutant in solution revealed minimally reduced α-helical content, a less-compact overall structure, and increased lipid-binding ability. In solution-binding studies, apoA-I and purified ABCA1 also showed direct binding between them. In ABCA1-transfected HEK293 cells, L38G/K40G had a significantly enhanced ability to form nHDL, which suggests that a destabilized N-terminal bundle facilitates nHDL formation. The total cholesterol efflux from ABCA1-transfected HEK293 cells was unchanged in mutant versus WT apoA-I, though, which suggests that cholesterol efflux and nHDL particle formation might be uncoupled events. Analysis of the particles in the efflux media revealed a population of apoA-I-free lipid particles along with nHDL. This model improves knowledge of nHDL formation for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314262PMC
http://dx.doi.org/10.1194/jlr.M084376DOI Listing

Publication Analysis

Top Keywords

nascent hdl
8
abca1-transfected hek293
8
hek293 cells
8
nhdl formation
8
cholesterol efflux
8
nhdl
6
n-terminal
4
n-terminal mutation
4
apoa-i
4
mutation apoa-i
4

Similar Publications

Background and aims: omentin-1 might present a potential role in metabolic syndrome (MS). The aim of our investigation was to evaluate the relationship between omentin-1 and nascent MS. Methods: we carried out a cross-sectional study in 606 obese subjects.

View Article and Find Full Text PDF

Insulin resistance is crucial in the pathogenesis of Metabolic Syndrome (MetS), type 2 diabetes mellitus (T2DM) and premature atherosclerotic cardiovascular disease (ASCVD). The triglyceride-glucose index (TyG index), a validated measure of insulin resistance, also predicts MetS, T2DM, the severity of albuminuria and ASCVD. There are scant data providing mechanistic insights into these sequalae.

View Article and Find Full Text PDF

Background: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport.

Methods: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins.

View Article and Find Full Text PDF

Background: Familial chylomicronemia syndrome (FCS) is a rare monogenic form of severe hypertriglyceridemia, caused by mutations in genes involved in triglyceride metabolism. Herein, we report the case of a Korean family with familial chylomicronemia syndrome caused by compound heterozygous deletions of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1).

Case Presentation: A 4-year-old boy was referred for the evaluation of severe hypertriglyceridemia (3734 mg/dL) that was incidentally detected 4 months prior.

View Article and Find Full Text PDF

Recent studies have implicated pre-beta and beta lipoproteins (VLDL and LDL) in the etiopathogenesis of complications of diabetes mellitus (DM). In contrast, alpha lipoprotein (HDL) is protective of the beta cells of the pancreas. This study examined the distribution of HDL in the islets of Langerhans of murine models of type 1 diabetic rats (streptozotocin (STZ)-induced DM in Wistar rats) and type 2 models of DM rats (Goto-Kakizaki (GK), non-diabetic Zucker lean (ZL), and Zucker diabetic and fatty (ZDF)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!