Background: Improved medical practice efficiency has been demonstrated by physicians using mobile device (mobile phones, tablets) electronic medical record (EMR) systems. However, the quantitative effects of these systems have not been adequately measured.

Objective: This study aimed to determine the effectiveness of near-field communication (NFC) integrated with a mobile EMR system regarding physician turnaround time in a hospital emergency department (ED).

Methods: A simulation study was performed in a hospital ED. Twenty-five physicians working in the ED participated in 2 scenarios, using either a mobile device or personal computer (PC). Scenario A involved randomly locating designated patients in the ED. Scenario B consisted of accessing laboratory results of an ED patient at the bedside. After completing the scenarios, participants responded to 10 questions that were scored using a system usability scale (SUS). The primary metric was the turnaround time for each scenario. The secondary metric was the usability of the system, graded by the study participants.

Results: Locating patients from the ED entrance took a mean of 93.0 seconds (SD 34.4) using the mobile scenario. In contrast, it only required a mean of 57.3 seconds (SD 10.5) using the PC scenario (P<.001). Searching for laboratory results of the patients at the bedside required a mean of only 25.2 seconds (SD 5.3) with the mobile scenario, and a mean of 61.5 seconds (SD 11.6) using the PC scenario (P<.001). Sensitivity analysis comparing only the time for login and accessing the relevant information also determined mobile devices to be significantly faster. The mean SUS score of NFC-mobile EMR was 71.90 points.

Conclusions: NFC integrated with mobile EMR provided for a more efficient physician practice with good usability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231820PMC
http://dx.doi.org/10.2196/11187DOI Listing

Publication Analysis

Top Keywords

effectiveness near-field
8
near-field communication
8
integrated mobile
8
electronic medical
8
medical record
8
emergency department
8
simulation study
8
mobile device
8
turnaround time
8
mobile
6

Similar Publications

Near-Field Mixing in a Coaxial Dual Swirled Injector.

Flow Turbul Combust

November 2024

Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France.

Improving mixing between two coaxial swirled jets is a subject of interest for the development of next generations of fuel injectors. This is particularly crucial for hydrogen injectors, where the separate introduction of fuel and oxidizer is preferred to mitigate the risk of flashback. Raman scattering is used to measure the mean compositions and to examine how mixing between fuel and air streams evolves along the axial direction in the near-field of the injector outlet.

View Article and Find Full Text PDF

This study investigates the aerodynamic and aeroacoustic behavior of propellers operating in ground-effect conditions, with an emphasis on the impact of porous ground surface treatments. The investigation explores the potential of porous materials to reduce propeller noise near the ground, a major barrier to the acceptance and integration of Urban Air Mobility (UAM) systems. Experiments were conducted in an anechoic chamber using an APC [Formula: see text] inch propeller in a pusher configuration.

View Article and Find Full Text PDF

Near-Field Clutter Mitigation in Speckle Tracking Echocardiography.

Ultrasound Med Biol

January 2025

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Biomedical Engineering Programme, The University of Hong Kong, Hong Kong. Electronic address:

Objective: Near-field (NF) clutter filters are critical for unveiling true myocardial structure and dynamics. Randomized singular value decomposition (rSVD) stands out for its proven computational efficiency and robustness. This study investigates the effect of rSVD-based NF clutter filtering on myocardial motion estimation.

View Article and Find Full Text PDF

The ability to significantly enhance near-field coupling between light and matter at the nanoscale is crucial for advancing the fields of nanophotonics and nanopolariotonics. However, conventional probes face challenges in achieving optimal light-matter interaction. In this study, we propose a novel, to the best of our knowledge, simulation-based strategy that leverages tip engineering to dramatically amplify the scattering field through tailored double-layer geometries.

View Article and Find Full Text PDF

The extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 10-10 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!