Proton beams used for radiotherapy have potential for superior sparing of normal tissue, although range uncertainties are among the main limiting factors in the accuracy of dose delivery. The aim of this study was to benchmark an N-vinylpyrrolidone based polymer gel to perform three-dimensional measurement of geometric proton beam characteristics and especially to test its suitability as a range probe in combination with an anthropomorphic phantom. For single proton pencil beams as well as for 3×3cm mono-energy layers depth dose profiles, lateral dose distribution at different depths and proton range were evaluated in simple cubic gel phantoms at different energies from 75 to 115MeV and different dose levels. In addition, a 90MeV mono-energetic beam was delivered to an anthropomorphic 3D printed head phantom, which was filled with gel. Subsequently, all phantoms underwent magnetic resonance imaging using an axial pixel size of 0.68-0.98mm and with slice thicknesses of 2 or 3mm to derive a 3-dimensional distribution of the T relaxation time, which correlates with radiation dose. Indices describing lateral dose distribution and proton range were compared against predictions from a treatment planning system (TPS, for cubic and head phantoms) and Monte Carlo simulations (MC, for the head phantom) after manual rigid co-registration with the T relaxation time datasets. For all pencil beams, the FWHM agreement with TPS was better than 1mm or 7%. For the mono-energetic layer, the agreement with TPS in this respect was even better than 0.3mm in each case. With respect to range, results from gel measurements differed no more than 0.9mm (1.6%) from values predicted by TPS. In case of the anthropomorphic phantom, deviations with respect to a nominal range of about 61mm as well as in FWHM were slightly higher, namely within 1.0mm and 1.1mm respectively. Average deviations between gel and TPS/MC were similar (-0.3mm±0.4mm/-0.2±0.5mm). In conclusion, polymer gel dosimetry was found to be a valuable tool to determine geometric proton beam properties three-dimensionally and with high spatial resolution in simple cubic as well as in a more complex anthropomorphic phantom. Post registration range errors of the order of 1mm could be achieved. The additional registration uncertainty (95%) was 1mm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zemedi.2018.08.002DOI Listing

Publication Analysis

Top Keywords

proton range
12
anthropomorphic phantom
12
gel dosimetry
8
range
8
polymer gel
8
geometric proton
8
proton beam
8
pencil beams
8
lateral dose
8
dose distribution
8

Similar Publications

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

The synthetic availability and wide range of biological activity of hydrazides and hydrazones make them attractive subjects for investigation. In this study, we focused on synthesis of 2-methyl-5-nitro-6-phenylnicotinohydrazide-based hydrazones derived from the corresponding substituted aldehydes. The structure of the obtained compounds was studied using NMR spectroscopy and DFT calculations.

View Article and Find Full Text PDF

The real-time measurement of the content of impurities such as iron and aluminium ions is one of the keys to quality evaluation in the production process of high-purity lithium carbonate; however, impurity detection has been a time-consuming process for many years, which limits the optimisation of the production of high-purity lithium carbonate. In this context, this work explores the possibility of using water-soluble fluorescent probes for the rapid detection of impurity ions. Salicylaldehyde was modified with the hydrophilic group dl-alanine to synthesise a water-soluble Al fluorescent probe (Probe A).

View Article and Find Full Text PDF

Objectives: We propose and test a framework to detect disease diagnosis using a recent large language model (LLM), Meta's Llama-3-8B, on French-language electronic health record (EHR) documents. Specifically, it focuses on detecting gout ('goutte' in French), a ubiquitous French term that has multiple meanings beyond the disease. The study compares the performance of the LLM-based framework with traditional natural language processing techniques and tests its dependence on the parameter used.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!