Background: The plastid acquisition by secondary endosymbiosis is a driving force for the algal evolution, and the comparative genomics was required to examine the genomic change of symbiont. Therefore, we established a pipeline of a de novo assembly of middle-sized genomes at a low cost and with high quality using long and short reads.
Results: We sequenced symbiotic algae Chlorella variabilis using Oxfofrd Nanopore MinION as the long-read sequencer and Illumina HiSeq 4000 as the short-read sequencer and then assembled the genomes under various conditions. Subsequently, we evaluated these assemblies by the gene model quality and RNA-seq mapping rate. We found that long-read only assembly could not be suitable for the comparative genomics studies, but with short reads, we could obtain the acceptable assembly. On the basis of this result, we established the pipeline of de novo assembly for middle-sized algal genome using MinION.
Conclusions: The genomic change during the early stages of plastid acquisition can now be revealed by sequencing and comparing many algal genomes. Moreover, this pipeline offers a solution for the assembly of various middle-sized eukaryotic genomes with high-quality and ease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154909 | PMC |
http://dx.doi.org/10.1186/s12864-018-5067-1 | DOI Listing |
Faraday Discuss
October 2023
Graduate School of Engineering, Tottori University, Japan.
Automated electrochemical assembly is an electrochemical method to synthesise middle-sized molecules, including linear oligosaccharides, and some linear oligosaccharides can be electrochemically converted into the corresponding cyclic oligosaccharides effectively. In this study, the target cyclic oligosaccharide is a protected cyclic (1,3;1,6)-β-glucan dodecasaccharide, which consists of two types of glucose trisaccharides with β-(1,3)- and β-(1,6)-glycosidic linkages. The formation of the protected cyclic dodecasaccharide was confirmed by the electrochemical one-pot dimerisation-cyclisation of the semi-circular hexasaccharide.
View Article and Find Full Text PDFChem Rec
September 2021
Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan.
Electrochemical methods offer a powerful, reliable, and environmentally benign approach for the synthesis of small organic molecules, and such methods are useful not only for the transformation of small molecules, but also for the preparation of oligomers and polymers. Electrochemical assembly is a concept that allows structurally well-defined middle-sized organic molecules to be synthesized by applying electrochemical methods. The preparation of dendrimers, dendronized polymers, and oligosaccharides are introduced as examples of such an approach.
View Article and Find Full Text PDFBMC Genomics
September 2018
Department of BioScience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan.
Background: The plastid acquisition by secondary endosymbiosis is a driving force for the algal evolution, and the comparative genomics was required to examine the genomic change of symbiont. Therefore, we established a pipeline of a de novo assembly of middle-sized genomes at a low cost and with high quality using long and short reads.
Results: We sequenced symbiotic algae Chlorella variabilis using Oxfofrd Nanopore MinION as the long-read sequencer and Illumina HiSeq 4000 as the short-read sequencer and then assembled the genomes under various conditions.
Phys Chem Chem Phys
September 2016
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!