Plant-derived lipid molecular proxies can provide insight into present-day soil carbon input and to what extent organic carbon is degraded within soil. To explore whether soil characteristics of 'primary' (i.e., native grasslands above the historic treeline) and 'secondary' (i.e., human-modified grasslands below the historic treeline) grasslands reflect recent and/or past vegetation input we compared lipid characteristics in modern vegetation and soil from 30 locations around the historic treeline (1150 m) in Central Otago, New Zealand. At each location the dominant plant species and the mineral topsoil (0-10 cm) were analyzed for a range of n-alkane and n-fatty acid proxies. Grass/herbs and trees differed in their total n-alkane concentration (88.9 vs 232.6 μg/g plant dry weight), even-over-odd predominance (EOP, 10.2 vs 18.3) and n-C/n-C ratio (2.2 vs 6.4). Soil samples under all plant growth forms had considerably lower n-alkane and n-fatty concentrations than the corresponding plant samples. Soil under grass/herbs had lower (4.1) odd-over-even predominance (OEP) values compared to soil under trees (10.1) indicating that lipid degradation under grass/herbs cover was higher. Principle component analysis demonstrated that soil lipid characteristics reflected the current vegetation cover. Principal component analysis also revealed a separation between 'primary' and 'secondary' grasslands. However, further evaluations are required to confirm the validity of lipid proxies in reconstructing the vegetation history of secondary grasslands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.07.105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!