AI Article Synopsis

  • The study focused on the effects of land use and land use changes (LULUC) on greenhouse gas emissions in the Campos Gerais region of southern Brazil, which contributes significantly to global carbon emissions.
  • Results indicated that between 1930 and 2017, LULUC was responsible for 91% of GHG emissions, with fossil fuel combustion becoming the primary source after 1985.
  • Adopting conservation agriculture practices could significantly reduce emissions, potentially allowing the agricultural sector to act as a net carbon sink while enhancing ecosystem services over the next century.

Article Abstract

Currently the land use and land use change (LULUC) emits 1.3 ± 0.5 Pg carbon (C) year, equivalent to 8% of the global annual emissions. The objectives of this study were to quantify (1) the impact of LULUC on greenhouse gas (GHG) emissions in a subtropical region and (2) the role of conservation agriculture to mitigate GHG emissions promoting ecosystem services. We developed a detailed IPCC Tier 2 GHG inventory for the Campos Gerais region of southern Brazil that has large cropland area under long-term conservation agriculture with high crop yields. The inventory accounted for historical and current emissions from fossil fuel combustion, LULUC and other minor sources. We used Century model to simulate the adoption of conservation best management practices, to all croplands in the region from 2017 to 2117. Our results showed historical (1930-2017) GHG emissions of 412 Tg C, in which LULUC contributes 91% (376 ± 130 Tg C), the uncertainties ranged between 13 and 36%. Between 1930 and 1985 LULUC was a major source of GHG emission, however from 1985 to 2015 fossil fuel combustion became the primary source of GHG emission. Forestry sequestered 52 ± 24 Tg C in 0.6 Mha in a period of 47 years (1.8 Tg C Mha year) and no-till sequestered 30.4 ± 24 Tg C in 2 Mha in a period of 32 years (0.5 Tg C Mha year) being the principal GHG mitigating activities in the study area. The model predictions showed that best management practices have the potential to mitigate 13 years of regional emissions (330 Tg C in 100 years) or 105 years of agriculture, forestry and livestock emissions (40 Tg C in 100 years) making the agriculture sector a net carbon (C) sink and promoting ecosystem services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2018.07.068DOI Listing

Publication Analysis

Top Keywords

ecosystem services
12
ghg emissions
12
quantify impact
8
land change
8
greenhouse gas
8
emissions
8
conservation agriculture
8
promoting ecosystem
8
fossil fuel
8
fuel combustion
8

Similar Publications

On the effectiveness of the red alga Laurencia microcladia as a PAH biomonitor in coastal marine ecosystems.

Environ Sci Pollut Res Int

December 2024

Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.

Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.

View Article and Find Full Text PDF

Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services.

Environ Sci Pollut Res Int

December 2024

Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.

Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.

View Article and Find Full Text PDF

Integrating Ecological Suitability and Socioeconomic Feasibility at Landscape Scale to Restore Biodiversity and Ecosystem Services in Southern Chile.

Environ Manage

December 2024

Departamento de Ciencias de la Vida - UD Ecología, Edificio de Ciencias, Universidad de Alcalá, E-28805, Alcalá de Henares, Spain.

Deforestation and forest degradation are key drivers of biodiversity loss and global environmental change. Ecosystem restoration is recognized as a global priority to counter these processes. Forest restoration efforts have commonly adopted a predominantly ecological approach, without including broader socioeconomic variables and the characteristics of the rural context.

View Article and Find Full Text PDF

Testing the Dispersal-Origin-Status-Impact (DOSI) scheme to prioritise non-native and translocated species management.

Sci Rep

December 2024

Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.

Assessing actual and potential impacts of non-native species is necessary for prioritising their management. Traditional assessments often occur at the species level, potentially overlooking differences among populations. The recently developed Dispersal-Origin-Status-Impact (DOSI) assessment scheme addresses this by treating biological invasions as population-level phenomena, incorporating the complexities affecting populations of non-native species.

View Article and Find Full Text PDF

Orchard meadows, a specific agroforestry system characterised by scattered high-stem fruit trees, are a traditional element of several cultural landscapes in Central Europe and provide important ecosystem services. Since the middle of the 20th century, orchard meadows have drastically declined across Europe. Spatial information on the drivers and patterns of such a decline in several regions in Central Europe is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!