Denitrification associated with emergent macrophytes is a pivotal process underlying the treatment performance of wetlands and slow-flow waterways. Laboratory scale experiments targeting N losses via denitrification in sediments colonized by emergent macrophytes require the use of mesocosms that are necessarily open to the atmosphere. Thus, the proper quantification of N effluxes relies on the accurate characterization of the air-water gas exchanges. In this study, we present a simple approach for direct measurements of the gas transfer velocity, in open-top mesocosms with Phragmites australis, by using argon as a tracer. Different conditions of water velocity (0, 1.5, 3, and 6 cm s) and temperature (8.5, 16, and 28 °C), were tested, along with, for the first time, the presence of emergent vegetation. The outcomes demonstrated that water velocity and temperature are not the only factors regulating aeration at the mesocosm scale. Indeed, the gas transfer velocity was systematically higher, in the range of 42-53%, in vegetated compared to unvegetated sediments. The increase of small-local turbulence patterns created within water parcels moving around plant stems translated into significant modifications of the reaeration process. The adopted approach may be used to improve the accuracy of denitrification measurements by N efflux-based methods in wetland and slow-flow waterway sediments colonized by emergent macrophytes. Moreover, the present outcomes may have multiple implications for whole-system metabolism estimations from which largely depend our understanding of biogeochemical dynamics in inland waters that have strong connections to worldwide issues, such as nitrate contamination and greenhouse gas emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.09.079DOI Listing

Publication Analysis

Top Keywords

gas transfer
12
transfer velocity
12
emergent macrophytes
12
presence emergent
8
emergent vegetation
8
argon tracer
8
implications whole-system
8
denitrification measurements
8
sediments colonized
8
colonized emergent
8

Similar Publications

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Acute cardiovascular disorders are incriminated in up to 33% of maternal deaths, and the presence of sickle cell anemia (SCA) aggravates the risk of peripartum complications. Herein, we present a 24-year-old Caribbean woman with known SCA who developed a vaso-occlusive crisis at 36 weeks of gestation that required emergency Cesarean section. In the early postpartum period, she experienced fever with rapid onset of acute respiratory distress in the context of COVID-19 infection that required tracheal intubation and mechanical ventilatory support with broad-spectrum antibiotics and blood exchange transfusion.

View Article and Find Full Text PDF

Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.

View Article and Find Full Text PDF

With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!