Aminoacyl-tRNA synthetases (AaRSs) are vital enzymes for translation of proteins in cells. AaRSs catalyse the esterification of a specific amino acid to corresponding tRNAs to form an aminoacyl-tRNA that is used in ribosome-based protein synthesis. We focused on Glutaminyl tRNA synthetase (GlnRS) enzyme from the extreme thermophile Thermus thermophilus for structural studies. Our thermal shift assays show binding of enzyme substrates L-Gln and ATP as well as of various metals including cesium. We resolved crystal structures of apo-GlnRS as well as those in complex with AMP and ATP at 2.8 Å, 2.4 Å and 2.6 Å respectively. The bound cesium was found at the site of magnesium that typically binds to GlnRS. High structural conservation was evident in the Thermus thermophilus GlnRS when compared to those from Escherichia coli GlnRS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.09.115 | DOI Listing |
Protein Sci
February 2025
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain.
Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland.
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the phage vB_Tt72. The enzyme demonstrates strong 3'→5' exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick Ireland
Small, stable biomedicines, like peptides and hormones, are already available on the market as spray dried formulations, however large biomolecules like antibodies and therapeutic enzymes continue to pose stability issues during the process. Stresses during solid-state formation are a barrier to formulation of large biotherapeutics as dry powders. Here, we explore an alternative avenue to protein stabilisation during the spray drying process, moving away from the use of excipients.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Department of Computer Science, School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland.
The thermophilic bacterium Rhodothermus marinus has mainly been studied for its thermostable enzymes. More recently, the potential of using the species as a cell factory and in biorefinery platforms has been explored, due to the elevated growth temperature, native production of compounds such as carotenoids and exopolysaccharides, the ability to grow on a wide range of carbon sources including polysaccharides, and available genetic tools. A comprehensive understanding of the metabolism of cell factories is important.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Institute for Molecular Biosciences, Goethe-University Frankfurt/M., Frankfurt, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt/M., Frankfurt, Germany. Electronic address:
c-di-GMP is an important second messenger in bacteria regulating, for example motility, biofilm formation, cell wall biosynthesis, infectivity, and natural transformability. It binds to a multitude of intracellular receptors. This includes proteins containing general secretory pathway II (GSPII) domains such as the N-terminal domain of the Vibrio cholerae ATPase MshE (MshEN) which binds c-di-GMP with two copies of a 24-amino acids sequence motif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!