Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Experimental verification of optical modulation with external stress has not been easily available in flexible systems. Here, we intentionally induced extra stress in wide band gap ZnO thin films by a unique prestress-driven deposition processing that utilizes a stretching mode. The stretching mode provides homogeneous but biaxial stresses in the hexagonal wurtzite structure, leading to the extension of the c-axis and the contraction of the a-axis. As a result, the reduction of the optical band gap by ∼150 meV was observed for the strain of ∼4.87%. The band gap narrowing was found to occur from the respective downward and upward shifts of the conduction band minimum and valence band maximum under the applied stress. The experimental evidence of optical modulations was supported by the theoretical calculations using density functional theory. The reduced strong interactions between Zn d and O p orbitals were assumed to be responsible for the band gap narrowing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b02474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!