Detection and Quantitation of Trace Fentanyl in Heroin by Surface-Enhanced Raman Spectroscopy.

Anal Chem

Department of Chemistry , City University of New York, City College of New York, 160 Convent Avenue , New York , New York 10031 , United States.

Published: November 2018

The identification of fentanyl, a main culprit in opioid overdose deaths, has become critical. Whereas Raman spectroscopy is an effective tool for detecting illicit drugs, the weak intensity of Raman scattering can make it difficult to distinguish trace materials. This shortcoming is addressed by surface-enhanced Raman spectroscopy (SERS), which produces strong signal enhancements when target compounds are near metal nanoparticles. This work examines the use of a paper-based substrate impregnated with silver nanoparticles for the detection of trace quantities of fentanyl alone and as an adulterant in heroin. In addition, intensity ratios of diagnostic peaks associated with each substance were fitted to a Langmuir isotherm calibration model and used for the quantitative analysis of fentanyl in heroin mixtures. Linearity was observed at <6% fentanyl, a significant finding that is consistent with concentrations found in drugs seized during law enforcement efforts. In addition, swabbing with these paper-based SERS substrates facilitated the recovery of fentanyl from surfaces, showing this to be applicable for crime scene investigations. However, assessment using the calibration model proved difficult for swabbed samples. Overall, this work demonstrates a potentially simple and sensitive technique for the forensic analysis and quantitation of fentanyl in trace amounts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b02909DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
fentanyl heroin
8
surface-enhanced raman
8
detection quantitation
4
quantitation trace
4
fentanyl
4
trace fentanyl
4
heroin surface-enhanced
4
raman
4
spectroscopy identification
4

Similar Publications

Gold nanorod in silver tetrahedron: Cysteamine mediated synthesis of SERS probes with embedded internal markers for AFP detection.

Anal Chim Acta

February 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:

Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.

Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).

View Article and Find Full Text PDF

The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.

View Article and Find Full Text PDF

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!