Study Question: Is the Janus kinase and signal transducer and activator of transcription (JAK-STAT) signalling pathway involved in ovarian follicle development and primordial follicle activation?
Summary Answer: JAK1 is a key factor involved in the regulation of primordial follicle activation and maintenance of the ovarian reserve.
What Is Known Already: A series of integrated, intrinsic signalling pathways (including PI3K/AKT, mTOR and KITL) are responsible for regulating the ovarian reserve of non-growing primordial follicles and ultimately female fertility. The JAK-STAT signal transduction pathway is highly conserved with established roles in cell division and differentiation. Key pathway members (specifically JAK1, STAT3 and SOCS4) have been previously implicated in early follicle development.
Study Design, Size, Duration: A laboratory animal study was undertaken using the C57Bl/6 inbred mouse strain as a model for human ovarian follicle development. To determine which Jak genes were most abundantly expressed during primordial follicle activation, mRNA expression was analysed across a developmental time-course, with ovaries collected from female mice at post-natal days 1 (PND1), 4 (PND4), 8 (PND8), as well as at 6 weeks (6WK) and 7 months (7MTH) (n ≥ 4). Functional analysis of JAK1 was performed on PND2 mouse ovaries subjected to in vitro explant culture treated with 12.5 μM Ruxolitinib (JAK inhibitor) or vehicle control (DMSO) for 48 h prior to histological assessment (n ≥ 4).
Participants/materials, Setting, Methods: The expression and localization of the JAK family during ovarian follicle development in the C57Bl/6 inbred mouse strain were evaluated using quantitative PCR, immunoblotting and immunolocalisation. Functional studies were undertaken using the JAK inhibitor Ruxolitinib to investigate the underpinning cellular mechanisms via biochemical in vitro inhibition and histological assessment of intact neonate ovaries. All experiments were replicated at least three times using tissue from different mice unless otherwise stated.
Main Results And The Role Of Chance: Jak1 is the predominant Jak mRNA expressed in the C57Bl/6 mouse ovary across all developmental time-points assessed (P ≤ 0.05). Forty-eight hour inhibition of JAK1 with Ruxolitinib of PND2 ovaries in vitro demonstrated concomitant acceleration of primordial follicle activation and apoptosis (P ≤ 0.001) and upregulation of downstream JAK-STAT pathway members STAT3 and suppressors of cytokine signalling 4 (SOCS4).
Large-scale Data: N/A.
Limitations, Reasons For Caution: Results are shown in one species, the C57Bl/6 mouse strain as an established model of human ovary development. Ruxolitinib also inhibits JAK2, with decreased efficacy. However, Jak2 mRNA had limited expression in the mouse ovary, particularly at the neonatal stages of follicle development, thus any effect of Ruxolitinib on primordial follicle activation was unlikely to be mediated via this isoform.
Wider Implications Of The Findings: This study supports a key role for JAK1 in the maintenance and activation of primordial follicles, with potential for targeting the JAK-STAT pathway as a method of regulating the ovarian reserve and female fertility.
Study Funding And Competing Interest(s): This project has been funded by the Australian National Health and Medical Research Council (G1600095) and The Hunter Medical Research Institute Bob and Terry Kennedy Children's Research Project Grant in Pregnancy & Reproduction (G1501433). All authors declare no conflict of interests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molehr/gay041 | DOI Listing |
Comb Chem High Throughput Screen
January 2025
Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Jinniu District, Chengdu, Sichuan, 610072, P.R. China.
Objective: This study aimed to investigate the possible mechanism through which acupuncture protects ovaries with Poor Ovarian Response (POR) in rats based on microRNA (miRNA).
Methods: Thirty-six SPF SD female non-pregnant rats aged 8 weeks were randomly divided into the blank group, model group, and acupuncture group, with 12 rats in each group. According to the group, the rats were given gavage of Tripterygium wilfordii polyglycosides suspension for 14 days to establish the model of POR, and then the rats were treated with acupuncture for 2 weeks, once a day, for 20 minutes.
Food Chem Toxicol
January 2025
College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:
Endocrinology
January 2025
Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA.
We created the c.1286C>G stop-gain mutation found in a family with primary ovarian insufficiency (POI) at age 30 years. The Eif4enif1 C57/Bl6 transgenic mouse model contained a floxed exon 10-19 cassette with a conditional knock-in cassette containing the c.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Public Health, Jiangxi Medical College, Nanchang University; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China; Department of Reproductive Medicine, the 1st affiliated hospital, Jiangxi Medical College, Nanchang University; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, China; HuanKui College, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University, Nanchang University, Nanchang 330006, China. Electronic address:
The impact of micro/nano plastics (MPs/NPs) on human health is a significant area of research. Studies on the effects of maternal exposure to microplastics (MPs) on the fertility in offspring have been conducted, but the damage caused by nanoplastics (NPs) remains ambiguous. In this study, pregnant Kunming mice were exposed to 30 mg/kg/day PS-NPs from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!