Objectives: The purpose of this study was to evaluate the diagnostic performance of magnetization transfer (MT) imaging and multigradient echo magnetic resonance imaging (MRI) to quantify pancreatic fibrosis and lipomatosis in patients before pancreatoduodenectomy for postoperative risk stratification with histopathology as the reference standard.

Materials And Methods: Twenty-four patients (age, 68 ± 8 years, 16 males) prospectively underwent quantitative MT imaging using a 2-dimensional gradient echo sequence with and without MT prepulse and multigradient echo imaging on a 3 T MRI 1 day before pancreatoduodenectomy due to adenocarcinoma of the pancreatic head region (n = 20), neuroendocrine tumor (n = 3), or intraductal papillary mucinous neoplasm (n = 1). Magnetization transfer ratio (MTR) and proton density fat fraction (PDFF) were measured in pancreatic tail (PT) and at the resection margin (RM). Histopathologically, pancreatic fibrosis was graded as mild, moderate, or severe (F1-F3), lipomatosis was graded as 0% to 10%, 11% to 30%, and greater than 30% fat deposition (L1-L3). In addition, MTR and histopathologic fibrosis was assessed in pancreatic adenocarcinoma. Mann-Whitney U test and Spearman correlation were used.

Results: Patients with advanced pancreatic fibrosis (F3) showed a significantly higher MTR compared with the F1 group at the RM and PT (38 ± 4 vs 32.3 ± 1.6, P = 0.018 and 39.7 ± 5.5 vs 31.2 ± 1.7, P = 0.001). Spearman correlation coefficient of MTR and fibrosis grade was r = 0.532 (P = 0.011) and 0.554 (P = 0.008), respectively. Pancreatic parenchyma with advanced fat deposition (L2-L3) showed significantly higher PDFF compared with lipomatosis grade L1 (RM: P = 0.002 and PT: P = 0.001). Proton density fat fraction of pancreatic parenchyma exhibited a moderate and significant correlation with histopathologic lipomatosis grade (RM: r = 0.668 and PT: r = 0.707, P < 0.001). Magnetization transfer ratio was significantly higher in pancreatic adenocarcinoma compared with pancreatic parenchyma (44 ± 5.5 vs 36.0 ± 4.4 and 37.4 ± 5.4, P = 0.004).

Conclusions: Multiparametric MRI of the pancreas including MTR and PDFF maps may provide quantitative and noninvasive information on pancreatic fibrosis and lipomatosis before surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000496DOI Listing

Publication Analysis

Top Keywords

pancreatic fibrosis
20
magnetization transfer
16
pancreatic
12
fibrosis lipomatosis
12
magnetic resonance
12
multigradient echo
12
pancreatic parenchyma
12
transfer imaging
8
imaging multigradient
8
echo magnetic
8

Similar Publications

MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis.

Int Immunopharmacol

January 2025

Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China. Electronic address:

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored.

View Article and Find Full Text PDF

Metabolomic profiling of saliva from cystic fibrosis patients.

Sci Rep

January 2025

CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy.

The development of targeted therapies that correct the effect of mutations in patients with cystic fibrosis (CF) and the relevant heterogeneity of the clinical expression of the disease require biomarkers correlated to the severity of the disease useful for monitoring the therapeutic effects. We applied a targeted metabolomic approach by LC-MS/MS on saliva samples from 70 adult CF patients and 63 age/sex-matched controls to investigate alterations in metabolic pathways related to pancreatic insufficiency (PI), Pseudomonas aeruginosa (PA) colonization, CF liver disease (CFLD), and CF related diabetes (CFRD). Sixty salivary metabolites were differentially expressed, with 11 being less abundant and 49 more abundant in CF patients.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the usefulness of ultrasound-guided core-needle biopsy (US-CNB) for diagnosing type 1 AIP and evaluate the radiological outcomes following steroid therapy.

Materials And Methods: From January 2017 to June 2023, patients with pathology results containing "lymphoplasmacytic infiltration" and "fibrosis" were enrolled. The detection rate of level 1 histology by International Consensus Diagnostic Criteria (ICDC) and the contribution of US-CNB were assessed.

View Article and Find Full Text PDF

Novel inhibitory effect of Omega-3 fatty acids regulating pancreatic cancer progression.

Carcinogenesis

January 2025

Instituto de Investigaciones en Ciencias de la Salud, INICSA (CONICET - FCM UNC), 5016 Córdoba, Argentina.

Pancreatic cancer is a devastating malignancy in great need of new and more effective treatment approaches. In recent years, studies have indicated that nutritional interventions, particularly nutraceuticals, may provide novel avenues to modulate cancer progression. Here, our study characterizes the impact of ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as a nutraceutical intervention in pancreatic cancer using a genetically engineered mouse model driven by KrasG12D and Trp53R172H.

View Article and Find Full Text PDF

Hepatocyte nuclear factor 4-α is necessary for high fat diet-induced pancreatic β-cell mass expansion and metabolic compensations.

Front Endocrinol (Lausanne)

January 2025

Islet Biology and Metabolism Lab - IBM Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil.

Aims: This study investigates the role of Hepatocyte Nuclear Factor 4α (HNF4α) in the adaptation of pancreatic β-cells to an HFD-induced obesogenic environment, focusing on β cell mass expansion and metabolic adaptations.

Main Methods: We utilized an HNF4α knockout (KO) mouse model, with CRE-recombinase enzyme activation confirmed through tamoxifen administration. KO and Control (CTL) mice were fed an HFD for 20 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!