Diabetes is considered as a risk for cognitive decline, which is characterized by neurodegenerative alteration and innate immunity activation. Recently, complement 3 (C3), the critical central component of complement system, has been reported to play a key role in neurodegenerative alterations under pathological condition. Receptor for advanced glycation end products (RAGE) activation is confirmed to mediate several inflammatory cytokines production. However, whether C3 activation participates in the diabetic neuropathology and whether this process is regulated by RAGE activation remains unknown. The present study aimed to investigate the role of C3 in streptozotocin-induced diabetic mice and high glucose-induced primary astrocytes and the underlying modulatory mechanisms. The decreased synaptophysin density and increased C3 deposition at synapses were observed in the diabetic brain compared to the control brain. Furthermore, the elevated C3 was co-localized with GFAP-positive astrocytes in the diabetic brain slice in vivo and high glucose-induced astrocytes culture in vitro. Diabetes/high glucose-induced up-regulation of C3 expression at gene, protein and secretion levels, which were attenuated by pre-treatment with RAGE, p38MAPK and NF-κB inhibitors separately. These results demonstrate that high glucose induces C3 up-regulation via RAGE- p38MAPK-NF-κB signalling in vivo and in vitro, which might be associated with synaptic protein loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237571PMC
http://dx.doi.org/10.1111/jcmm.13884DOI Listing

Publication Analysis

Top Keywords

high glucose-induced
12
vivo vitro
8
rage activation
8
diabetic brain
8
high
4
glucose-induced complement
4
complement component
4
component up-regulation
4
up-regulation rage-p38mapk-nf-κb
4
rage-p38mapk-nf-κb signalling
4

Similar Publications

Protective Effects of Hydrogen Treatment Against High Glucose-Induced Oxidative Stress and Apoptosis via Inhibition of the AGEs/RAGE/NF-κB Signaling Pathway in Skin Cells.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H2), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

The role played by anionic channels in diabetic kidney disease (DKD) is not known. Chloride channel accessory 1 (CLCA1) facilitates the activity of TMEM16A (Anoctamin-1), a Ca2+-dependent Cl- channel. We examined if CLCA1/TMEM16A had a role in DKD.

View Article and Find Full Text PDF

Nerve aberrations and vascular lesions in the distal lower limbs are the etiological factors for diabetic foot ulcers (DFUs). This study aimed to understand the regulatory mechanism of angiogenesis in patients with DFU by examining lncRNA, as well as to explore effective targets for diagnosing and treating DFU. The serum levels of A1BG-AS1 and miR-214-3p and the predictive power of A1BG-AS1 for DFU were determined by quantitative PCR and ROC analysis.

View Article and Find Full Text PDF

Pharmacological treatment of diabetes mellitus-induced erectile dysfunction (DMED) has become increasingly challenging due to the limited efficacy of phosphodiesterase type 5 inhibitors (PDE5i). As the global prevalence of DM continues, there is a critical need for novel therapeutic strategies to address DMED. In our previous studies, we found that Glutathione peroxidase 4 (GPX4), a ferroptosis inhibitor, can ameliorate DMED in diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!