Poultry parvoviruses identified during the early 1980s are found worldwide in intestines from young birds with enteric disease syndromes as well as healthy birds. The chicken parvovirus (ChPV) and turkey parvovirus (TuPV) belong to the Aveparvovirus genus within the subfamily Parvovirinae. Poultry parvoviruses are small, non-enveloped, single-stranded DNA viruses consisting of three open reading frames, the first two encoding the non-structural protein (NS) and nuclear phosphoprotein (NP) and the third encoding the viral capsid proteins 1 (VP1 and VP2). In contrast to other parvoviruses, the VP1-unique region does not contain the phospholipase A2 sequence motif. Recent experimental studies suggested the parvoviruses to be the candidate pathogens in cases of enteric disease syndrome. Current diagnostic methods for poultry parvovirus detection include PCR, real-time PCR, enzyme linked immunosorbent assay using recombinant VP2 or VP1 capsid proteins. Moreover, sequence-independent amplification techniques combined with next-generation sequencing platforms have allowed rapid and simultaneous detection of the parvovirus from affected and healthy birds. There is no commercial vaccine; hence, the development of an effective vaccine to control the spread of infection should be of primary importance. This review presents the current knowledge on poultry parvoviruses with emphasis on taxonomy, phylogenetic relationship, genomic analysis, epidemiology, pathogenesis and diagnostic methods.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03079457.2018.1517938DOI Listing

Publication Analysis

Top Keywords

poultry parvoviruses
12
enteric disease
8
healthy birds
8
capsid proteins
8
diagnostic methods
8
parvoviruses
5
avian parvovirus
4
parvovirus classification
4
classification phylogeny
4
phylogeny pathogenesis
4

Similar Publications

CpG islands: Features and distribution in the genomes of porcine parvovirus.

Pol J Vet Sci

September 2024

Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China.

Porcine parvovirus disease is a reproductive disorder caused by the porcine parvovirus (PPV) in sows and is characterised by miscarriage, stillbirth and mummification in pregnant sows. Porcine parvovirus disease poses a significant threat to pork herds and seriously hinders healthy and sustainable development of the pig farming industry. Currently, there is no effective treatment for porcine parvovirus disease except for prevention and control measures.

View Article and Find Full Text PDF

Molecular and ultrastructural characteristics of virulent and attenuated vaccine strains of goose parvovirus LIV-22.

Arch Virol

December 2024

Molecular Virology Laboratory, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), Trubetskaya 8, 119048, Moscow, Russia.

Article Synopsis
  • The goose parvovirus (GPV) causes severe disease in young geese and ducks, leading to high mortality rates of 70-100% in naive groups, resulting in major losses for farmers.
  • A study investigated the historical virulent GPV LIV-22 strain from 1972 and a developed attenuated vaccine strain, showing both belong to the classical GPV group but exhibit unique genetic changes.
  • Microscopic analysis revealed significant cellular damage in infected geese shortly after exposure, providing insights into how GPV evolves and causes disease, which can aid future research on GPV's molecular pathogenesis.
View Article and Find Full Text PDF

Genetic Diversity and Recombination Analysis of Canine Parvoviruses Prevalent in Central and Eastern China, from 2020 to 2023.

Microorganisms

October 2024

Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China.

Article Synopsis
  • Canine parvovirus type-2 (CPV-2) is a highly contagious virus causing severe gastrointestinal diseases in dogs, with high fatality rates globally.
  • A study collected 130 rectal swabs from dogs showing gastroenteritis symptoms in central and eastern China from 2020 to 2023, revealing 118 positive samples mainly of the CPV-2c variant.
  • Analysis of the VP2 gene indicated mutations affecting the protein's structure, contributing to CPV-2's complex evolution, which could inform updates to existing vaccines.
View Article and Find Full Text PDF

Research note: Simultaneous detection of GPV, H5 AIV, and GoAstV via TaqMan probe-based multiplex qPCR.

Poult Sci

December 2024

Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China. Electronic address:

Article Synopsis
  • Goose parvovirus (GPV), H5 subtype avian influenza virus (AIV), and goose astrovirus (GoAstV) are major threats to the poultry industry in China, highlighting a need for better diagnostic tools.
  • A new multiplex qualitative qPCR assay was developed to detect these three viruses simultaneously, showing high sensitivity and specificity without cross-reactivity with other avian pathogens.
  • The assay demonstrated effectiveness in analyzing 60 clinical samples, revealing significant prevalence rates for the viruses and showing potential for improving disease management and monitoring in poultry.
View Article and Find Full Text PDF
Article Synopsis
  • The study examined the effects of novel goose parvovirus (NGPV) infection on the skeletal muscle, brain, and intestine of ducks with locomotor dysfunction, using a sample of 97 diseased ducks from various breeds.
  • Clinical signs suggested parvovirus infection, and postmortem results revealed widespread muscle emaciation and congestion in the brain and intestine, with molecular tests indicating the intestine had the highest presence of the virus.
  • Histopathological analysis showed significant tissue damage, with NGPV detected in muscle fibers and brain cells, confirming its role in locomotor disorders associated with the infection.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!