Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the imaging process of satellite-based pushbroom hyperspectral imager, attitude motions of satellite platform, represented by vibrations, will cause aliasing of the object information comes from different sub-areas of the detector, leading to degradation of hyperspectral image quality. In order to suppress and correct the imaging errors caused by satellite vibrations more effectively, spatial and spectral degradation mechanisms of typical dispersive pushbroom imaging spectrometer caused by satellite vibration are studied in this paper, including theoretical simulation and experimental study. With the analysis of spectral mixing process during exposure, the relationship between spectrum of ground object and satellite attitude is obtained, and a degradation model of pushbroom spectral imaging is presented. The effects of different attitudes of vibration are considered in the degradation model. Mean mixing ratios of each pixel are easy to calculate with a universal coefficient matrix, as long as the satellite attitude parameters of each moment are known. Then the simulation degraded spectral image data cube is achieved. The common expression of mean mixing ration is derived in detail. More important, the effects of vibration amplitude and frequency are quantitative analyzed separately. Degraded simulation and ground simulation experiments are carried out based on real hyperspectral data cubes, then the quality of the cubes before and after degradation are evaluated. Results show that simulation is in good agreement with reality. Mean mixing ratio can reflect the degradation extent of hyperspectral data directly. The satellite vibrations bring about spatial quality deteriorate of hyperspectral image, and lead to the aliasing of spectrum comes from different ground object. The degradation extent of hyperspectral data is determined mainly by vibration amplitude. The influence of frequency is limited.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!