AI Article Synopsis

  • IFN-λs are cytokines with potential anti-cancer properties, and this study focuses on rL-hIFN-λ1, which is linked to gastric cancer cell death and is expressed by Newcastle disease virus.
  • The study examined how rL-hIFN-λ1 affects lung adenocarcinoma A549 cells by analyzing cell growth, migration, and proteins related to endoplasmic reticulum stress (ERS), autophagy, and apoptosis.
  • Results indicated that rL-hIFN-λ1 significantly inhibited A549 cell proliferation and migration, and it promoted apoptosis through ERS pathways, suggesting its potential as a therapeutic option for lung adenocarcinoma.

Article Abstract

Background: IFN-λs are a kind of cytokine with anti-tumor, immunomodulatory, and anti-proliferative activity. Recent studies have shown that the recombinant Newcastle disease virus expresses human IFN-λ1 (rL-hIFN-λ1), which plays a role in gastric cancer cell apoptosis. Endoplasmic reticulum stress (ERS) induces autophagy and apoptosis in tumor cells. In this study, we explored the relationship between ERS and rL-hIFN-λ1-induced apoptosis of lung adenocarcinoma A549 cells and its underlying mechanism.

Methods: First, we investigated the effect of rL-hIFN-λ1 on cellular proliferation, migration, and proteins associated with ERS, autophagy, and apoptosis of A549. Second, after administration of the ERS inhibitor, the associated proteins induced by rL-hIFN-λ1 were detected. Finally, a subcutaneous mouse model was used to examine the effect of rL-hIFN-λ1 on tumor growth and the ERS and apoptosis associated proteins in tumor tissues.

Results: The results showed that the proliferation and migration of A549 cells, and tumor tissue growth were significantly inhibited and the ERS, autophagy, and apoptosis associated proteins were upregulated in the experimental group. Additionally, both 4-PBA and knockdown of PERK or CHOP reduced the levels of rL-hIFN-λ1-induced autophagy and apoptosis-associated proteins. BCL-2 knockdown caused autophagy and apoptosis associated protein upregulation.

Conclusions: In summary, rL-hIFN-λ1 inhibited cell proliferation and activated ERS, autophagy, and apoptosis in A549 cells and tissues, and when ERS pathways were blocked, the inhibiting effect was even more pronounced. Therefore, the recombinant Newcastle disease virus rL-hIFN-λ1-induced apoptosis of A549 cells is connected to ER stress and could be a promising therapeutic agent for lung adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6209783PMC
http://dx.doi.org/10.1111/1759-7714.12857DOI Listing

Publication Analysis

Top Keywords

a549 cells
20
autophagy apoptosis
20
apoptosis a549
16
recombinant newcastle
12
newcastle disease
12
disease virus
12
rl-hifn-λ1-induced apoptosis
12
ers autophagy
12
associated proteins
12
apoptosis associated
12

Similar Publications

Flavonoids and Kavalactones Isolated from Seeds of Alpinia katsumadai Hayata. and Their Cytotoxic Activities.

Chem Biodivers

January 2025

Guizhou Medical University, School of Pharmaceutical Sciences, University Town, Gui'an New District, 550025, Guiyang, CHINA.

An unrevealed dihydroflavone-monoterpene conjugate (1), two unrevealed kavalactones (2-3, including one with an uncommon side chain), and thirteen previously identified compounds (4-16) were extracted from Alpinia katsumadai Hayata. seeds. The two-dimension structures of the new compounds were authenticated utilizing HRESIMS as well as NMR spectral analysis, while their absolute chiral configurations were ascertained either by correlating the experimental and simulated values of electronic circular dichroism (ECD) patterns or conducting X-ray diffraction experiments.

View Article and Find Full Text PDF

Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0-100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results.

View Article and Find Full Text PDF

Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.

View Article and Find Full Text PDF

Origanum syriacum Induces Apoptosis in Lung Cancer Cells by Altering the Ratio of Bax/Bcl2.

Anticancer Agents Med Chem

January 2025

Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, 27410, Gaziantep, Turkey.

Background: The lung cancer is the leading cause of death worldwide. Although methods such as surgery, chemotherapy, radiotherapy, and immunotherapy are used for treatment, these treatments are sometimes inadequate. In addition, the number of chemotherapeutic agents used is very limited, and it is very important to use new natural agents that can increase the effect of these methods used in treatment.

View Article and Find Full Text PDF

Lymph node metastasis significantly affects the NSCLC patients' staging, treatment strategy, and prognosis. Studies have shown that IGF2BP3, an oncofetal protein and an m6A reader, overexpresses and correlates to lymph node metastasis and worse overall survival in histopathological studies including NSCLC, but its mechanism needs further study. This study explored IGF2BP3's function and mechanism in LUAD lymphatic metastasis using public databases, a human LUAD tissue microarray, human LUAD cells, and a lymphatic metastasis model in male BALB/c nude mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!