Highly sensitive and multiplexed miRNA analysis based on digitally encoded silica microparticles coupled with RCA-based cascade amplification.

Analyst

Key Laboratory for Nano-Bio Interface Research, Nano-Bio-Chem Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

Published: October 2018

Currently, miRNA analysis is significant for understanding miRNA regulation networks and clinical diagnostics and therapy. Analytical strategies feasible for multiplex miRNA-sensitive analysis are still in high demand. Herein, we propose a novel strategy for miRNA analysis by coupling cascade amplification with digitally encoded silica microparticles. The microparticles are precisely fabricated in a digital form through a one-step deposition strategy and are highly efficient for multiplex analysis. The cascade amplification composed of RCA and nicking-assisted strand-displacement amplification (SDA) exhibits high amplification efficiency and requires no complicated sequence design, thus improving the compatibility with base-stacking hybridization on our microparticles. Parallel and sensitive analyses for let-7a and miR-21 in one pot without mutual interference have been achieved with both high sensitivity (LOD, ∼0.5 fM) and wide dynamic range (10 pM-1 fM). Moreover, our strategy exhibits high specificity for miRNAs of homologous sequence and good anti-interference ability in a complex sample matrix. Considering that there are up to 128 (27) kinds of microparticles available, our strategy can be applied for dozens of miRNA-sensitive analyses in one pot, and it has great potential for miRNA signature analysis as well as widespread clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an01393dDOI Listing

Publication Analysis

Top Keywords

mirna analysis
12
cascade amplification
12
digitally encoded
8
encoded silica
8
silica microparticles
8
exhibits high
8
analysis
6
mirna
5
microparticles
5
amplification
5

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.

Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).

View Article and Find Full Text PDF

Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.

View Article and Find Full Text PDF

β-cell dysfunction in pancreatic islets, characterized as either the loss of β-cell mass or the resistance of β-cell to glucose, is the leading cause of progression to diabetes. Islet transplantation became a promising approach to replenish functional β-cell mass. However, not much known about changes in islets used for transplantation after isolation.

View Article and Find Full Text PDF

Background: Post-stroke depression (PSD) is the most prevalent neuropsychiatric complication following a stroke. The inflammatory theory suggests that PSD may be associated with an overactive inflammatory response. However, research findings regarding inflammation-related indicators in PSD remain inconsistent and elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!