Excitonic phenomena in perovskite quantum-dot supercrystals.

Phys Chem Chem Phys

Information Optical Technologies Centre, ITMO University, Saint Petersburg 197101, Russia.

Published: October 2018

Quantum confinement and collective excitations in perovskite quantum-dot (QD) supercrystals offer multiple benefits to the light emitting and solar energy harvesting devices of modern photovoltaics. Recent advances in the fabrication technology of low dimensional perovskites has made the production of such supercrystals a reality and created a high demand for the modelling of excitonic phenomena inside them. Here we present a rigorous theory of Frenkel excitons in lead halide perovskite QD supercrystals with a square Bravais lattice. The theory shows that such supercrystals support three bright exciton modes whose dispersion and polarization properties are controlled by the symmetry of the perovskite lattice and the orientations of QDs. The effective masses of excitons are found to scale with the ratio of the superlattice period and the number of QDs along the supercrystal edge, allowing one to fine-tune the electro-optical response of the supercrystals as desired for applications. We also calculate the conductivity of perovskite QD supercrystals and analyze how it is affected by the optical generation of the three types of excitons. This paper provides a solid theoretical basis for the modelling of two- and three-dimensional supercrystals made of perovskite QDs and the engineering of photovoltaic devices with superior optoelectronic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp04724cDOI Listing

Publication Analysis

Top Keywords

excitonic phenomena
8
perovskite quantum-dot
8
supercrystals
8
quantum-dot supercrystals
8
perovskite supercrystals
8
perovskite
6
phenomena perovskite
4
supercrystals quantum
4
quantum confinement
4
confinement collective
4

Similar Publications

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Local Strain Engineering of Two-Dimensional Transition Metal Dichalcogenides Towards Quantum Emitters.

Nanomicro Lett

January 2025

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.

Two-dimensional transition metal dichalcogenides (2D TMDCs) have received considerable attention in local strain engineering due to their extraordinary mechanical flexibility, electonic structure, and optical properties. The strain-induced out-of-plane deformations in 2D TMDCs lead to diverse excitonic behaviors and versatile modulations in optical properties, paving the way for the development of advanced quantum technologies, flexible optoelectronic materials, and straintronic devices. Research on local strain engineering on 2D TMDCs has been delved into fabrication techniques, electronic state variations, and quantum optical applications.

View Article and Find Full Text PDF

One-Dimensional Excitonic Insulator of MTe (M = Mo, W) Atomic Wires.

Nano Lett

January 2025

Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.

Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.

View Article and Find Full Text PDF

Theoretical Study on the Excitation Energy Transfer Dynamics in the Phycoerythrin PE555 Light-Harvesting Complex.

ACS Omega

December 2024

Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing 100872, China.

Photosynthesis in nature begins with light harvesting. The special pigment-protein complex converts sunlight into electron excitation that is transmitted to the reaction center, which triggers charge separation. Evidence shows that quantum coherence between electron excited states is important in the excitation energy transfer process.

View Article and Find Full Text PDF

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!