This paper describes an operational evaluation of the US Environmental Protection Agency's (EPA) Air Pollution Exposure Model (APEX). APEX simulations for a multipollutant ambient air mixture, i.e. ozone (O), carbon monoxide (CO), and particulate matter 2.5 microns in diameter or less (PM), were performed for two seasons in three study areas in central Los Angeles. APEX predicted microenvironmental concentrations were compared with concentrations of these three pollutants monitored in the Exposure Classification Project (ECP) study during the same periods. The ECP was designed expressly for evaluating exposure models and measured concentrations inside and outside 40 microenvironments. This evaluation study identifies important uncertainties in APEX inputs and model predictions useful for guiding further exposure model input data and algorithm development efforts. This paper also presents summaries of the concentrations in the different microenvironments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145485 | PMC |
http://dx.doi.org/10.1080/23311843.2018.1453022 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Porous adsorbents are a promising class of materials for the direct air capture of CO (DAC). Practical implementation of adsorption-based DAC requires adsorbents that can be used for thousands of adsorption-desorption cycles without significant degradation. We examined the potential degradation of adsorbents by a mechanism that appears to have not been considered previously, namely, ozonolysis by trace levels of ozone from ambient air.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China. Electronic address:
Air pollution is a well-established risk factor for lung cancer, but limited evidence exists on its impact on the treatment of lung cancer. The objective of this study was to investigate the impact of key pollutants on the efficacy of PD-1/PD-L1 inhibitor immunotherapy in non-small cell lung cancer (NSCLC) patients, thereby providing clinicians with evidence to potentially enhance the efficacy of PD-1 therapy and inform policy decisions for cancer care. To this end, we conducted a study involving 361 NSCLC patients who received PD-1/PD-L1 inhibitor immunotherapy, examining the correlation between air pollution exposure and progression-free survival (PFS) following immunotherapy treatment.
View Article and Find Full Text PDFArthritis Rheumatol
January 2025
Medicine & Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE.
Objective: Determine whether pollutants such as fire smoke-related particulate matter smaller than 2.5 microns (PM) are associated with incident rheumatoid arthritis (RA) and RA-associated interstitial lung disease (RA-ILD).
Methods: This case-control study used Veterans Affairs data 10/1/2009-12/31/2018.
Environ Sci Pollut Res Int
January 2025
Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:
Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!