Optimization of Fermentation Conditions and Media for Production of Glucose Isomerase from Using Response Surface Methodology.

Scientifica (Cairo)

Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Go Vap, Ho Chi Minh, Vietnam.

Published: September 2018

Glucose isomerase is an enzyme widely used in food industry for producing high-fructose corn syrup. Many microbes, including , have been found to be able to produce glucose isomerase. However, the number of studies of glucose isomerase production from is limited. In this study, we establish the optimal medium components and culture conditions for glucose isomerase production by evaluating the combined influence of multiple factors and different parameters via Plackett-Burman design and response surface methodology in Modde 5.0 software. The optimized conditions, which were experimentally confirmed as follows: D-xylose (1.116%), KHPO (0.2%), MgSO·7HO (0.1%), yeast extract (1.161%), peptone (1%), pH 7.0, inoculum size 20% (w/v), shaking 120 rpm at 36.528°C for 48 hours, give rise to production of highest activity of glucose isomerase (0.274 ± 0.003 U/mg biomass). These results provide additional important information for future development of large-scale glucose isomerase production by

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139186PMC
http://dx.doi.org/10.1155/2018/6842843DOI Listing

Publication Analysis

Top Keywords

glucose isomerase
28
isomerase production
12
response surface
8
surface methodology
8
glucose
7
isomerase
7
production
5
optimization fermentation
4
fermentation conditions
4
conditions media
4

Similar Publications

Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI).

View Article and Find Full Text PDF

Engineering xylose utilization in Cupriavidus necator for enhanced poly(3-hydroxybutyrate) production from mixed sugars.

Bioresour Technol

December 2024

Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:

Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.

View Article and Find Full Text PDF

Continuous Evolution of Protein through T7 RNA Polymerase-Guided Base Editing in .

ACS Synth Biol

January 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter.

View Article and Find Full Text PDF
Article Synopsis
  • Xylose, derived from lignocellulose, is a crucial renewable resource for producing valuable bioproducts like fumaric acid; optimizing its conversion is essential.
  • The study identified a genetically modified strain (TKL-4) of A. pullulans that effectively uses xylose and corncob-derived xylose to produce calcium fumarate, demonstrating higher yields compared to glucose.
  • The TKL-4 strain achieved impressive fermentation results, generating up to 88.5 g/L of calcium fumarate from xylose during a 10-liter fermentation process, showcasing its potential for eco-friendly bioproduct development.
View Article and Find Full Text PDF

Advances in the biosynthesis of D-allulose.

World J Microbiol Biotechnol

November 2024

School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.

Article Synopsis
  • * There are two main ways to produce D-allulose: chemical synthesis, which can create unwanted byproducts, and biosynthesis, which uses enzymes to convert starch or glycerol into D-allulose more efficiently.
  • * The article reviews recent research on biosynthesis, highlighting the enzymes used, their properties, and the potential for improved production methods for D-allulose.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!