A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial-Targeted Antioxidant MitoQ Prevents Lipopolysaccharide-Induced Accumulation of Triacylglycerol and Lipid Droplets Biogenesis in Epithelial Cells. | LitMetric

The effect of bacterial lipopolysaccharide (LPS) on eukaryotic cell could be accompanied by a significant metabolic shift that includes accumulation of triacylglycerol (TAG) in lipid droplets (LD), ubiquitous organelles associated with fatty acid storage, energy regulation and demonstrated tight spatial and functional connections with mitochondria. The impairment of mitochondrial activity under pathological stimuli has been shown to provoke TAG storage and LD biogenesis. However the potential mechanisms that link mitochondrial disturbances and TAG accumulation are not completely understood. We hypothesize that mitochondrial ROS (mROS) may play a role of a trigger leading to subsequent accumulation of intracellular TAG and LD in response to a bacterial stimulus. Using isolated epithelial cells from the frog urinary bladder, we showed that LPS decreased fatty acids oxidation, enhanced TAG deposition, and promoted LD formation. LPS treatment did not affect the mitochondrial membrane potential but increased cellular ROS production and led to impairment of mitochondrial function as revealed by decreased ATP production and a reduced maximal oxygen consumption rate (OCR) and OCR directed at ATP turnover. The mitochondrial-targeted antioxidant MitoQ at a dose of 25 nM did not prevent LPS-induced alterations in cellular respiration, but, in contrast to nonmitochondrial antioxidant -tocopherol, reduced the effect of LPS on the generation of ROS, restored the LPS-induced decline of fatty acids oxidation, and prevented accumulation of TAG and LD biogenesis. The data obtained indicate the key signaling role of mROS in the lipid metabolic shift that occurs under the impact of a bacterial pathogen in epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139225PMC
http://dx.doi.org/10.1155/2018/5745790DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
mitochondrial-targeted antioxidant
8
antioxidant mitoq
8
accumulation triacylglycerol
8
lipid droplets
8
metabolic shift
8
impairment mitochondrial
8
fatty acids
8
acids oxidation
8
tag
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!