Previously we showed that alveolar macrophages (AMs) from patients with chronic beryllium disease (CBD) and beryllium sensitization (BeS) demonstrated significantly greater cell surface CD16 (encoded by the FCGR3A gene) than controls. We hypothesized that these differences were related to polymorphisms in the FCGR3A gene. This study was to determine the association between FCGR3A polymorphisms in CBD, BeS versus controls as well as clinical data, providing potential information about disease pathogenesis, risk, and activity. A total of 189 CBD/154 BeS/150 controls (92 Be-exposed non-diseased and 58 healthy controls) were included in this study. Sequence-specific primers polymerase chain reaction (PCR-SSP) was used to determine FCGR3A 158V/F polymorphisms. We found significantly higher frequencies of the 158V allele (OR: 1.60 (CI: 1.17-2.19), p = 0.004) and 158VV homozygotes (OR: 2.97 (CI: 1.48-5.97) p = 0.007) in CBD versus controls. No differences were found in the frequencies of FCGR3A alleles or genotypes between BeS versus controls and CBD versus BeS. Average changes in exercise testing maximum workload (Wlm), maximum oxygen consumption (VOm), and diffusion capacity of carbon monoxide (DLCO) demonstrated greater decline over time in those CBD cases with the 158VV gene, modeled between 10 and 40 years from first beryllium exposure. The FCGR3A V158F polymorphism is associated with CBD compared to BeS and controls and may impact lung function in CBD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431584 | PMC |
http://dx.doi.org/10.1038/s41435-018-0046-8 | DOI Listing |
J Integr Neurosci
December 2024
Department of Neurology, Hainan West Central Hospital, 571799 Danzhou, Hainan, China.
Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.
Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.
BMC Pregnancy Childbirth
December 2024
Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Objective: To explore the biological relationship between the regulatory signal pathways involved in differentially expressed genes and recurrent spontaneous abortion (RSA) by analyzing the gene expression microarray data of unexplained RSA.
Methods: The gene expression profile data of chorionic villi from unexplained recurrent abortion with normal karyotype and selective induced abortion were compared. Differentially expressed genes were analyzed by the "Limma" package in R Studio, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out with "Cluster Profiler" and "org.
Rheumatology (Oxford)
December 2024
Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Objectives: To investigate the pro-phagocytic phenotype of macrophages in SSc and other rheumatic diseases by examining their activation, signaling pathways, and treatment responses, with the goal of uncovering mechanisms that drive enhanced phagocytosis.
Methods: Single-cell RNA sequencing (scRNA-seq) datasets (GSE138669/GSE212109) from skin and lung macrophages of healthy controls and SSc patients were analyzed. Human monocyte-derived macrophages (hMDM) were differentiated from CD14+ monocytes from healthy controls, SSc, RA, PsA, and axSpA patients.
Front Oncol
November 2024
Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
J Med Virol
December 2024
Center for Virology, Medical University of Vienna, Vienna, Vienna, Austria.
Long coronavirus disease 2019 (COVID) (LC) symptoms including pain and autonomic dysfunction are in some patients associated with small-fiber neuropathy (SFN). The pathomechanisms underlying SFN are mostly unclear. Natural killer (NK) cells play a crucial role in immune regulation, viral clearance and nerve metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!