The present study compiles new and literature data in a GIS platform aiming to (a) evaluate the extent and magnitude of Cr contamination in a Mediterranean region (Assopos-Thiva and Central Evia (Euboea) Basins, Greece); (b) combine spatial distribution of Cr in soil and groundwater with land use maps; (c) determine geochemical constraints on contamination by Cr; and (d) provide information that will be useful for better management of land use in a Mediterranean type ecosystem in order to prevent further degradation of natural resources. The spatial diversity of Cr distribution in soils and groundwater throughout the C. Evia and Assopos-Thiva Basins is considered. It is attributed to both natural Cr sources (Cr-bearing peridotites, affecting primarily soil) and human (industrial) activities (the dominant source of groundwater contamination). A combination of the spatial distribution of metals in soil and land use maps was used to define the specific areas of agricultural land use with elevated heavy metal contents. Furthermore, the combination of the spatial distribution of Cr in groundwater and land use maps allows for definition of specific areas of industrial land use with elevated Cr concentrations (Inofita, south Assopos-Thiva Basin). Despite the good correlation (r = 0.75) between Cr(VI) and the strong oxidant NO in C. Evia, the lower standard potential (E) values for NO compared to those for CrO (the latter is a stronger oxidant than the former) suggest that NO is not an oxidant of Cr. This detailed assessment and presentation of the available analytical data for soil and groundwater in Assopos-Thiva and C. Evia Basins on a land use map provides information for land management decision makers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.09.186DOI Listing

Publication Analysis

Top Keywords

soil groundwater
12
spatial distribution
12
land maps
12
land
9
spatial diversity
8
diversity distribution
8
distribution soil
8
land management
8
mediterranean region
8
evia assopos-thiva
8

Similar Publications

An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.

View Article and Find Full Text PDF

Hydrocarbon biodegradation processes at a historic oil production site - A signature metabolite study.

Sci Total Environ

January 2025

Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany. Electronic address:

Decades of research demonstrated that microbes can remediate petroleum-contaminated environments through biodegradation of hydrocarbons. Recent studies have applied signature metabolite analysis to investigate hydrocarbon-contaminated sites, focusing primarily on aquifer systems and metabolites of relatively water-soluble monoaromatic hydrocarbons. However, the number of studies involving non-targeted analysis and identification of individual metabolites in environmental samples is limited.

View Article and Find Full Text PDF

Immobilization of per- and polyfluorinated alkyl substances (PFAS) from field contaminated groundwater by a novel organo-clay vs. colloidal activated carbon under flow conditions.

J Hazard Mater

January 2025

University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, Wuppertal 42285, Germany. Electronic address:

Two novel and unique adsorptive materials, one (Fluorolock®) from clay mineral sepiolite coated with the cationic polymer polydiallyldimethylammionium chloride (pDADMAC) and the other (Intraplex®) from colloidal activated carbon were specially developed for the in situ remediation of per- and polyfluoroalkyl substances (PFAS) in the saturated zone. We evaluated the potential of both materials to immobilize PFAS in soils under flow conditions via soil column experiments using groundwater, which was contaminated with PFAS in the field. Furthermore, the potential ecotoxicological effects of both materials on aquatic organisms were assessed by exposing the soil column effluent to Daphnia magna.

View Article and Find Full Text PDF

The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus's environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!