Elastoplastic behavior of highly cross-linked and vitamin E-stabilized polyethylene - A biomechanical study.

Clin Biomech (Bristol)

Biomechanics Research Laboratory, Department of Medical Research, MacKay Memorial Hospital (MMH), Taipei County, Taiwan; Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan; School of Dentistry, National Yang-Ming University, Taipei, Taiwan. Electronic address:

Published: November 2018

Background: Vitamin E-stabilized cross-linked polyethylene has been touted to alleviate the negative effects of oxidation. Although it has demonstrated significant improvements in wear resistance, bio-tribology, and oxidative resistance, little is known about the effect of antioxidants and dosage of cross-linking on the mechanical strength. This study aimed to evaluate the mechanical properties of these novel materials, which are commonly used in orthopedic implants.

Methods: Samples of different polymers were prepared with various levels of cross-linking and with or without vitamin E-stabilization and then tested according to ASTM D695 and D638. The elastoplastic characteristics under compression and tension were compared between the groups.

Findings: Vitamin E-stabilized cross-linked polyethylene showed a significant increase in elastic modulus over other groups, with a maximum increase of 26% in compression and 40% in tension when compared to the highly cross-linked group without vitamin E stabilization. The elastoplastic behavior under compression differed to that in tension for all polymers, demonstrating the anisotropic characteristics of these polymers.

Interpretation: The lower mechanical strength of highly cross-linked polyethylene has been a complication with the use of this polymer in orthopedic liners. This current study suggests that vitamin E-stabilized cross-linked polyethylene could be a suitable alternative material for knee implants because of its improved strength in resisting external forces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2018.09.021DOI Listing

Publication Analysis

Top Keywords

vitamin e-stabilized
16
cross-linked polyethylene
16
highly cross-linked
12
e-stabilized cross-linked
12
elastoplastic behavior
8
mechanical strength
8
tension compared
8
cross-linked
6
vitamin
6
polyethylene
5

Similar Publications

Purpose: The aim of this cross-sectional study was to compare survival, clinical and radiographic results of total knee arthroplasty (TKA) with vitamin E-stabilized polyethylene (VEPE) or conventional polyethylene (CPE) at a minimum of 7-year follow-up.

Methods: Patients who underwent primary TKA between 2011 and 2015, receiving the same cemented rotating platform knee design with VEPE or CPE tibial inserts, were identified. Patients were contacted for clinical and radiographic follow-up.

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the resistance to impingement damage of three different artificially aged UHMWPE materials used for total hip joint replacement. The results obtained can be used as a basis for an acceptance criterion for testing according to ASTM F2582-20.

Methods: Three different polyethylene liner materials, standard polyethylene (UHMWPE), moderately crosslinked (XLPE) and vitamin E stabilized crosslinked (XLPE-VE) polyethylene of the same design and manufacturer were tested up to one million impingement cycles according to ASTM F2582-20.

View Article and Find Full Text PDF

In Vitro Wear of a Novel Vitamin E Crosslinked Polyethylene Lumbar Total Joint Replacement.

Bioengineering (Basel)

October 2023

School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.

Background: A novel, lumbar total joint replacement (TJR) design has been developed to treat degeneration across all three columns of the lumbar spine (anterior, middle, and posterior columns). Thus far, there has been no in vitro studies that establish the preclinical safety profile of the vitamin E-stabilized highly crosslinked polyethylene (VE-HXLPE) lumbar TJR relative to historical lumbar anterior disc replacement for the known risks of wear and impingement faced by all motion preserving designs for the lumbar spine.

Questions/purpose: In this study we asked, (1) what is the wear performance of the VE-HXLPE lumbar TJR under ideal, clean conditions? (2) Is the wear performance of VE-HXLPE in lumbar TJR sensitive to more aggressive, abrasive conditions? (3) How does the VE-HXLPE lumbar TJR perform under impingement conditions?

Method: A lumbar TJR with bilateral VE-HXLPE superior bearings and CoCr inferior bearings was evaluated under clean, impingement, and abrasive conditions.

View Article and Find Full Text PDF

Majority of ultrahigh molecular weight polyethylene (UHMWPE) medical devices used in total joint arthroplasty are cross-linked using gamma radiation to improve wear resistance. Alternative methods of cross-linking are urgently needed to replace gamma radiation due to rapid decline in its supply. Peroxide cross-linking is a candidate method with widespread industrial applications.

View Article and Find Full Text PDF

In Vivo Performance of Vitamin E Stabilized Polyethylene Implants for Total Hip Arthroplasty: A Review.

J Arthroplasty

May 2023

Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA; Gyroid, LLC, Haddonfield, NJ.

Background: Vitamin E stabilization was introduced to improve the oxidative stability, wear resistance, and mechanical properties of highly crosslinked polyethylene (HXLPE). In this literature review, we asked: (1) How has vitamin E-stabilized HXLPE (VEPE) performed in vivo for total hip arthroplasty (THA) and how does it compare with conventional ultra-high molecular weight polyethylene (UHMWPE) and HXLPE without vitamin E; and (2) Is there an apparent difference in the clinical performance of VEPE created by blending versus diffusion?

Methods: We performed a systematic search of the literature according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines using PubMed and Embase. Included studies reported the in vivo behavior of VEPE in THA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!