Genome-wide identification and characterization of the CsSnRK2 family in Camellia sinensis.

Plant Physiol Biochem

College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address:

Published: November 2018

The sucrose nonfermenting 1 (SNF1)-related protein kinase 2 (SnRK2) genes play central roles in plant stress signal transduction. In this study, 8 SnRK2 genes were identified from the tea plant genome database and named CsSnRK2.1-8. Phylogenetic analysis showed that the CsSnRK2 genes were classifiable into three groups, similar to those of Arabidopsis thaliana, Oryza sativa and maize. The coding sequences (CDSs) of all CsSnRK2s were separated by eight introns, and their exon-intron organizations exhibited high similarity to those of other plants. The fluorescence of GFP fused with CsSnRK2.3 was detected in only the cytoplasm, while the rest of the proteins showed GFP signal in both the nucleus and the cytoplasm. The results of the expression patterns of the CsSnRK2 genes showed that CsSnRK2s were differentially induced by salt, polyethylene glycol (PEG) and abscisic acid (ABA) stress. Interestingly, The expression of CsSnRK2.3 was inhibited by ABA, suggesting the complicated roles of CsSnRK2s in the ABA signal transduction pathway. Some CsSnRK2 gene pairs showed significant expression change correlations under stresses, indicating that CsSnRK2s might exhibit synergistic effects of signal regulation in response to various stresses. In summary, this comprehensive analysis will facilitate further studies of the SnRK2 family of Camellia sinensis and provide useful information for the functional validation of CsSnRK2s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.09.021DOI Listing

Publication Analysis

Top Keywords

family camellia
8
camellia sinensis
8
snrk2 genes
8
signal transduction
8
cssnrk2 genes
8
cssnrk2s
5
genome-wide identification
4
identification characterization
4
cssnrk2
4
characterization cssnrk2
4

Similar Publications

A CCA1-like MYB subfamily member CsMYB128 participates in chilling sensitivity and cold tolerance in tea plants (Camellia sinensis).

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410128, China. Electronic address:

While flavonoid accumulation, light radiation, and cold stress are intrinsically connected in tea plants, yet the underlying mechanisms remain elusive. The circadian protein CCA1 and CCA1-like MYB transcription factors (TFs) play important roles in coordinating light and temperature signals in plant-environment interactions, their homologs in tea plants have not been addressed. Here we analyzed CsCCA1-like MYB family in tea genome and found one member, a circadian gene CsMYB128 responding to cold stress.

View Article and Find Full Text PDF

Golden camellia species are endangered species with great ecological significance and economic value in the section Chrysantha of the genus Camellia of the family Theaceae. Literature shows that more than 50 species of golden camellia have been found all over the world, but the exact number remains undetermined due to the complex phylogenetic background, the non-uniform classification criteria, and the presence of various synonyms and homonyms; and phylogenetic relationships among golden camellia species at the gene level are yet to be disclosed. Therefore, it is necessary to investigate the divergence time and phylogenetic relationships between all golden camellia species at the gene level to improve their classification system and achieve accurate identification of them.

View Article and Find Full Text PDF

Vesicle trafficking mediated by small GTPase CfRab6 in association with CfRic1 and CfRgp1 governs growth, conidiation, and pathogenicity of Colletotrichum fructicola.

Int J Biol Macromol

December 2024

College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China. Electronic address:

Small GTPase of the Rab family functions as molecular switch in vesicle trafficking, regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In our ongoing efforts to study the pathogenesis of Colletotrichum fructicola, the causal agent of anthracnose in edible-oil plant Camellia oleifera, we identified CfRab6 as the Rab GTPase and characterized its roles in C. fructicola.

View Article and Find Full Text PDF

Cold significantly impacts the growth and development of tea plants, thereby affecting their economic value. Receptor-like kinases (RLKs) are thought to play a pivotal role in signaling the plant's response to cold and regulating cold tolerance. Among the RLK subfamilies, wall-associated receptor-like kinases (WAKs) have been investigated across various plant species and have been shown to regulate cell growth and stress responses.

View Article and Find Full Text PDF

Novel polymycoviruses are encapsidated in filamentous virions.

J Virol

December 2024

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China.

is a relatively new viral family that was established nearly 5 years ago, but their viral morphologies (naked or encapsidated) remain controversial since only one member namely, filamentous virus 1 (CcFV1), was identified as being encapsidated in filamentous virions. Here, three novel double-stranded RNA (dsRNA) viruses belonging to the family were identified in three phytopathogenic fungal strains and tentatively named -sinensis polymycovirus 1 (PcsPmV1), and polymycovirus 1 and 2 (PhcPmV1 and 2), respectively. PcsPmV1 and PhcPmVs have five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, encoding five or seven putative open reading frames (ORFs), of which ORF1 encodes an RNA-dependent RNA polymerase, ORF5 encodes a prolein-alanine-serine-rich (P-A-S-rich) protein behaving as coat protein (CP); and dsRNAs 4 and 6 encode putative proteins with unknown functions and share no detectable identities with known viral sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!