Metabolites, the small molecules that underpin life, can act as indicators of the physiological state of the body when their abundance varies, offering routes to diagnosis of many diseases. The ability to assay for multiple metabolites simultaneously will underpin a new generation of precision diagnostic tools. Here, we report the development of a handheld device based on complementary metal oxide semiconductor (CMOS) technology with multiple isolated micro-well reaction zones and integrated optical sensing allowing simultaneous enzyme-based assays of multiple metabolites (choline, xanthine, sarcosine and cholesterol) associated with multiple diseases. These metabolites were measured in clinically relevant concentration range with minimum concentrations measured: 25 μM for choline, 100 μM for xanthine, 1.25 μM for sarcosine and 50 μM for cholesterol. Linking the device to an Android-based user interface allows for quantification of metabolites in serum and urine within 2 min of applying samples to the device. The quantitative performance of the device was validated by comparison to accredited tests for cholesterol and glucose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.09.013DOI Listing

Publication Analysis

Top Keywords

multiple metabolites
8
metabolites
6
multiple
5
integrated portable
4
portable system
4
system single
4
single chip
4
chip simultaneous
4
simultaneous measurement
4
measurement multiple
4

Similar Publications

Simultaneous Profiling of Multiple Phosphorylated Metabolites in Typical Biological Matrices via Ion-Pair Reversed-Phase Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems.

View Article and Find Full Text PDF

Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. () is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet.

View Article and Find Full Text PDF

Sarcopenia (SP), an age-associated condition marked by muscle weakness and loss has been strongly connected with metabolic factors according to substantial evidence. Nevertheless, the causal correlation between SP and serum metabolites, and the biological signaling pathways involved, is still not well understood. We performed a bidirectional two-sample Mendelian randomization (MR) analysis to examine the causal relationships between 1091 levels and 309 ratios of metabolites with SP traits, alongside investigating the relevant biological signaling pathways.

View Article and Find Full Text PDF

Urolithiasis affects a significant portion of the global population, causing discomfort and pain. Unfortunately, effective drugs to treat this disorder are currently unavailable due to multiple mechanisms and an incomplete understanding of its causes. Consequently, drugs with multiple targets could be a safer and more effective remedy for treating urolithiasis.

View Article and Find Full Text PDF

is a microorganism for production of 1,3-propanediol (1,3-PDO) and butanol, but suffers from lacking genetic tools for metabolic engineering to improve product titers. Furthermore, previous studies of have mainly focused on single genomic modification. The aim of this work is the development and application of a method for modification of multiple gene targets in the genome of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!