High fluoride content in the natural water sources is a serious matter of concern and adsorption is recommended as one of the most convenient, affordable and widely applied defluorination technologies. In this study, a novel composite was synthesized by impregnating magnesium (Mg), manganese (Mn) and zirconium (Zr) on powdered activated carbon (AC) for effective fluoride adsorption and the synthesis was made using sonochemical method. The characterization of the prepared adsorbent AC-Mg-Mn-Zr along with individual metal composites AC-Zr, AC-Mg and AC-Mn were done by SEM, EDX, FTIR, XRD and BET analysis to understand the major functional bonds, and changes in surface chemistry after adsorption. The mechanism of the process was discussed through major reactions involved for individual metals. Due to high point of zero charge (pH = 11.9), the adsorbent was able to remove more than 96% of fluoride consistently with only 1 g/L of optimum adsorbent dosage for a wide pH range (2 to 10). The maximum adsorption capacity obtained was 26.27 mg/g within an equilibrium time of 3 h. More than 96% energy saving was achieved in the sonochemical synthesis route compared to conventional precipitation method of synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2018.09.010 | DOI Listing |
Mikrobiyol Bul
January 2025
Selçuk Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Konya.
Akut gastroenterit dünya genelinde en yaygın enfeksiyon hastalıklarından biridir. Bu hastalıklar gelişmekte olan ülkelerde çocuk ölümlerine ve ciddi ekonomik kayıplara neden olmuştur. Hastalık genellikle yaygın diyare şeklinde kendini gösterse de bazı olgularda şiddetli enfeksiyon belirtilerine, hatta ölümlere neden olmuştur.
View Article and Find Full Text PDFHeliyon
January 2025
Departamento de Engenharia Florestal, Universidade Eduardo Mondlane, Av. Julius Nyerere Número 3453, Campus Universitário Principal, Edifício Número 1, 257, Maputo, Mozambique.
Mozambican miombo woodlands (MWs) have been experiencing severe anthropogenic threats, recognized to have an impact on plant species distribution, occurrence, diversity, and rarity patterns. Based on 3725 0.1 ha plots distributed across the country's MWs, this study aimed to assess the species rarity and commonness, protection status, and availability of commercial timber in MWs under varied environmental conditions.
View Article and Find Full Text PDFHeliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFMicrochem J
December 2024
Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
While many chemicals are regulated and routinely monitored in drinking water, they represent just a portion of all contaminants that may be present. Typical drinking water analyses involve sampling one liter or less of water, which could lead to trace level contaminants going undetected. In this study, a method was developed for using point-of-use activated carbon block drinking water filters as sampling devices.
View Article and Find Full Text PDFCommun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!