Gold nanoparticle biosensors, a novel application in gene transformation and expression.

Mol Cell Probes

Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.

Published: October 2018

The conventional techniques of PCR, Southern blot, northern blot, in situ hybridization, and RNase protection assay have long been used to investigate transformation and expression of genes, but most of them are time-consuming and have relatively low sensitivity. In recent years, applying biosensors for molecular identification of biomolecules has been expanding significantly. Hence in this study, Zabol melon was used as a model plant to introduce new DNA and RNA-based biosensors for confirming gene transformation and expression. First, the melon seeds were grown in vivo and Agrobacterium tumefaciens LBA4404 was used to introduce GUS reporter gene to the plant. In order to analyze GUS gene transformation and expression, probes were designed based on DNA, RNA, and cDNA of GUS gene sequence. Then, the analysis was performed using probes attached to gold nanoparticles to observe color change of the solution in presence of the target biomolecules. Hybridization of the probes with target molecules was evaluated at a wavelength of 400-700 nm and maximum change was observed in the wavelength range of 550-650 nm. In addition, lower detection limit of the assay was 0.25 ng/μL and linear regression showed the relationship between different concentrations of the genomic DNA and absorbance. Consequently, results showed that application of detectors attached to gold nanoparticles for investigation on gene transformation and expression is more rapid, specific and economic compared to the biochemical and molecular techniques. These tests can be carried out with initial optimization at research centers using the least facilities; hence there will be no need for special equipment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2018.07.002DOI Listing

Publication Analysis

Top Keywords

transformation expression
20
gene transformation
16
gus gene
8
attached gold
8
gold nanoparticles
8
gene
6
transformation
5
expression
5
gold nanoparticle
4
nanoparticle biosensors
4

Similar Publications

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Inverse dose protraction effects of high-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi.

J Integr Plant Biol

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.

The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Background: In the clinic, the primary conventional treatments of advanced non-small cell lung cancer (NSCLC) are surgery, radiation therapy, and chemotherapy. In recent years, immune checkpoint inhibitors (ICIs) have shown promise in optimizing therapeutic benefits when combined with other immunotherapies or standard therapies. However, effective biomarkers for distant metastasis or recurrence have yet to be identified, making it difficult to determine the best therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!