Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca), mPB1 (modified PBS without Ca), mPB1/EGTA (mPB1 containing EGTA), mPB1/EGTA (mPB1 containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2018.07.001DOI Listing

Publication Analysis

Top Keywords

ovine oocytes
16
vitrification solution
12
distribution function
12
vitro matured
8
matured ovine
8
oocytes
8
ethylene glycol
8
glycol tetraacetic
8
tetraacetic acid
8
intracellular calcium
8

Similar Publications

Di-(2-ethylhexyl) phthalate (DEHP) and Cadmium (Cd) affect female reproduction. To date, toxicological research has focused on the effects of individual contaminants, whereas living beings are exposed to mixtures. This study analyzed the effects of a DEHP/Cd mixture on nuclear and cytoplasmic maturation of sheep cumulus-oocyte complexes (COCs) compared with single compounds.

View Article and Find Full Text PDF

H3K4me3 Genome-Wide Distribution and Transcriptional Regulation of Transposable Elements by RNA Pol2 Deposition.

Int J Mol Sci

December 2024

Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.

Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice.

View Article and Find Full Text PDF

Identifying the composition of large vesicles in the cytoplasm of oocytes.

Reprod Fertil Dev

December 2024

Confocal Microscopy Unit, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand.

Context Oocyte vesicles, or vacuoles, have been described using transmission electron microscopy in most species. In sheep and cow oocytes, vesicles constitute up to 30% of the cytoplasm, their volume decreases during maturation and is lower in poorer quality oocytes, suggesting they are important for oocyte competence. However, the composition and function of these organelles is unknown.

View Article and Find Full Text PDF

Background: The process of maturing ovine oocyte in vitro has not yet been raised with acceptable results.

Objective: This study was designed to evaluate the γ-oryzanol effect as a supplement of maturation media on the development of ovine oocytes to blastocyst.

Methods: Aspirated from ovine ovaries, morphologically normal cumulus-oocyte complexes (COCs) were matured in media supplemented with or without 5 µM γ-oryzanol.

View Article and Find Full Text PDF

The astringent selection criteria for milk-oriented traits in dairy cattle have rendered these animals prone to various metabolic disorders. Postpartum lactational peak and reduced feed intake lead to negative energy balance in cattle. As a compensatory mechanism, cattle start mobilizing fat reserves to meet the energy demand for vital body functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!