Mechanistic study of the adjuvant effect of chitosan-aluminum nanoparticles.

Int J Pharm

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal. Electronic address:

Published: December 2018

The use of tailored particle-based adjuvants constitutes a promising way to enhance antigen-specific humoral and cellular immune responses. However, a thorough understanding of the mechanisms underlying their adjuvanticity is crucial to generate more effective vaccines. We studied the ability of chitosan-aluminum nanoparticles (CH-Al NPs), which combine the immunostimulatory effects of chitosan and aluminum salts, to promote dendritic cell activation, assess their impact on innate and adaptive immune responses, and compare the results to those reported for conventional chitosan particles (CH-Na NPs). All tested CH-NP formulations were capable of modulating cytokine secretion by dendritic cells. CH-Al NPs promoted NLRP3 inflammasome activation, enhancing the release of IL-1β without significantly inhibiting Th1 and Th17 cell-polarizing cytokines, IL-12p70 or IL-23, and induced DC maturation, but did not promote pro-inflammatory cytokine production on their own. In vivo results showed that mice injected with CH-Al NPs generated a local inflammatory response comparable to that elicited by the vaccine adjuvant alum. Importantly, after subcutaneous immunization with CH-Al NPs combined with the hepatitis B surface antigen (HBsAg), mice developed antigen-specific IgG titers in serum, nasal and vaginal washes. Overall, our results established CH-Al NPs as a potential adjuvant to enhance both innate and adaptive immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.09.044DOI Listing

Publication Analysis

Top Keywords

ch-al nps
20
immune responses
12
chitosan-aluminum nanoparticles
8
innate adaptive
8
adaptive immune
8
nps
6
ch-al
5
mechanistic study
4
study adjuvant
4
adjuvant chitosan-aluminum
4

Similar Publications

Mechanistic study of the adjuvant effect of chitosan-aluminum nanoparticles.

Int J Pharm

December 2018

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal. Electronic address:

The use of tailored particle-based adjuvants constitutes a promising way to enhance antigen-specific humoral and cellular immune responses. However, a thorough understanding of the mechanisms underlying their adjuvanticity is crucial to generate more effective vaccines. We studied the ability of chitosan-aluminum nanoparticles (CH-Al NPs), which combine the immunostimulatory effects of chitosan and aluminum salts, to promote dendritic cell activation, assess their impact on innate and adaptive immune responses, and compare the results to those reported for conventional chitosan particles (CH-Na NPs).

View Article and Find Full Text PDF

Association of chitosan and aluminium as a new adjuvant strategy for improved vaccination.

Int J Pharm

July 2017

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-0504, Coimbra, Portugal; University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal. Electronic address:

The use of particulate adjuvants offers an interesting possibility to enhance and modulate the immune responses elicited by vaccines. Aluminium salts have been extensively used as vaccine adjuvants, but they lack the capacity to induce a strong cellular and mucosal immune response. Taking this into consideration, in this study we designed a new antigen delivery system combining aluminium salts with chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!